
Symmetry-mode Refinements 
 
Prof. John S.O. Evans, Department of Chemistry, Durham University, Lower Mount Joy, 
South Rd,, Durham, DH1 3LE, UK. 

 
 



1. Introduction/overview 

These notes introduce the topic of symmetry- or distortion-mode refinements,1-2 which offer a 
convenient, concise and systematic way of studying compounds that undergo structural phase 
transitions.  We will use the language of the ISODISTORT suite of tools developed and main-
tained by Branton Campbell and Harold Stokes (https://stokes.byu.edu/iso/isodistort.php),3 
which interfaces with major Rietveld software packages such as TOPAS, Fullprof and GSAS.  
Similar and complementary tools are available via the Bilbao crystallagraphic server 
(https://www.cryst.ehu.es/cryst/amplimodes.html). 

2. Symmetry-changing phase transitions 

Many technologically important materials show changes in their properties (conductivity, 
magnetism, ferroelectricity, piezoelectricity, optical properties, etc) associated with phase 
transitions.  We can loosely divide phase transitions into two categories: reconstructive and 
non-reconstructive.  In the former, significant changes in bonding mean that the structures 
before and after the transition are very different, and are best considered separately.  In the 
latter, the changes in structure are often small (minor displacements in atomic coordinates or 
rotations of groups of atoms), despite have a significant impact on properties, and it can be 
useful to describe one structure relative to the other.  The structural changes lead to a change 
in space-group symmetry between what are called the parent (more formally aristotype) and 
the child (hettotype) structures.  Usually the higher-symmetry parent is a high temperature (or 
low pressure) form which transitions to a lower-symmetry child form on cooling, but this is 
not a thermodynamic requirement.4-5 

Several other lectures have discussed how it is often necessary to bring extra information 
to structural analysis from powder diffraction data.  The symmetry-mode approach gives us 
another opportunity for this by exploiting the relationship between parent and child structures.  
In a conventional crystallographic approach the lower-symmetry child is described by refining 
xyz coordinates without reference to the parent.  In the symmetry-mode approach, we describe 
the child structure in terms of the high-symmetry parent structure plus the amplitude of so-
called symmetry adapted distortion modes.  The amplitude of a mode (a single Rietveld pa-
rameter) typically affects multiple atoms in the child structure, which can lead to very concise 
(low parameter number) structural descriptions.1-2, 6   

We will explore these ideas using WO3 – the fruit-fly of phase transitions – in Section 3, 
but it’s useful to have a simple picture in mind before doing that.  If you’ve got a chemistry 
background, think about how you might describe a distorted water molecule with one short 
and one long O–H bond rather than its usual symmetric structure (point group C2v).  One way 
would be to quote xyz coordinates for each H relative to the O.  A more efficient way might 
be to remember that the normal modes of vibration of H2O can be described by an a1 symmet-
ric bond stretch, a b1 asymmetric bond stretch, and an a1 bending mode.  The distorted mole-
cule could then be described in terms of the undistorted form plus the amplitude of a frozen-in 
b1 asymmetric stretch.  Note that freezing in the a1 symmetric stretch or a1 bend wouldn’t 
lower the symmetry from C2v, but the b1 does.  a1 is called the totally symmetric irreducible 
representation.  Freezing in a mode with a different irreducible representation is a recipe for 
symmetry lowering (here to Cs). 

One advantage of the symmetry-mode approach is that the parameters refined are often di-
rectly related to the specific structural distortions occurring at the phase transition.  In metal 
oxide chemistry, for example, they often describe processes such as Jahn–Teller distortions of 
octahedra, or coupled rotations of linked MO6 octahedra.  This arises because the free energy 
change associated with a phase transition can be expressed in Landau theory in terms of the 
order parameters of the irreducible representations of the parent space group symmetry (these 



terms are defined in Section 3.2).7  Often only a small number of these order parameters (fre-
quently only one) dominate the free energy change.  The symmetry-mode approach lets us 
describe the child structure using this small number of energetically-relevant parameters. 

The advantages of the symmetry-mode approach can be summarised in the following five 
points.  Each is exemplified in either Section 3 or Section 4 of the notes. 

1. The symmetry-mode approach lets us explore the different possible phase transitions 
of a material in a concise and systematic way. 

2. We can often describe child structures with far fewer parameters than using traditional 
xyz fractional coordinates.  This can improve the quality of information extracted from 
powder data. 

3. The magnitude of the parameters we use are naturally defined in a range of ~0–2, 
where a large magnitude indicates a large structural change.  This can help identify 
which parameters are really relevant in understanding a transition. 

4. We can use well-developed web tools to do much of the hard work in understanding 
symmetry changes at transitions, helping to eliminate errors. 

5. Similar ideas can be used to describe structural transitions, order-disorder transitions, 
magnetic phase transitions, and transitions involving the displacements of (semi) rigid 
molecules. 

 

 
Figure 1: Phase transitions and their symmetry relationships in WO3.  Structures and approximate phase transi-

tion temperatures shown on the left, with WO6/2 octahedra shown in blue and oxygen atoms in red.  Partial 
group-subgroup tree shown on the right with space-group type and approximate cell parameters relative to the 

cubic aristotype shown.  Only the 7 observed structures of 1427 on the full group-subgroup tree are shown.  Red 
arrows show the actual transition sequence.  Solid lines are allowed to be continuous transitions; dashed are 

discontinuous.  Grey line transitions are not observed experimentally.  Irrep labels and descriptions are relative 
to the 𝑃𝑚 ሜͫ 𝑚 parent.  d1–d3 are basis vectors of the parent cell.  Pale blue labels are primary irreps between a 

specific pair of subgroups. 



3. Describing and systematising phase transitions 

3.1 WO3 phase transitions – the problem 
The use of symmetry modes to describe phase transitions can be exemplified using WO3.  The 
structures of the most common polymorphs of WO3 can be described as a network of corner-
sharing WO6/2 octahedra.  The highest symmetry parent aristotype would be cubic with space 
group type 𝑃𝑚3ሜ 𝑚 and contain perfectly regular WO6 octahedra with linear W–O–W linkag-
es.  This form of WO3 has never been observed, but we can think of it as the starting point for 
a series of phase transitions that occur on cooling.  These involve W atoms moving off-centre 
in the octahedra (second order Jahn–Teller distortions) and coupled rotations of the linked 
octahedra around different axes of the parent structure.  Looking down a column of octahedra, 
these rotations can occur in the same direction for adjacent octahedra (in phase tilts) or in dif-
ferent directions (out of phase tilts), and will be familiar to anybody who has worked on per-
ovskite chemistry.8-10  The distortions sequentially lower the symmetry, changing both the 
unit cell and space group as summarized in Figure 1.  Understanding the relationships be-
tween the various unit cells, symmetry elements, origin choices and fractional atomic coordi-
nates of each of these structures (and which xyz coordinates are free to refine in a Rietveld 
analysis) is hard.  It becomes even harder for more complicated structures!  Note also from 
Figure 1 that a space-group type isn’t sufficient to specify the structure.  For example, space 
group number 14 appears twice as 𝑃2ଵ/𝑐 and 𝑃2ଵ/𝑛.  To fully describe the symmetry, the 
space-group type, the unit cell (basis) and the origin of each structure need to be specified. 

3.2 Symmetry modes - some background terminology 
Although there’s a terminology learning curve to overcome, exploring the relationships be-
tween WO3 structures becomes easier using symmetry modes.  With online software tools the 
relationships can be easily explored without a full understanding of the group theory, but we 
summarise some of the common terminology here for completeness.11  You should be able to 
follow most of the rest of the notes independently of this section. 

The symmetry operations of a space group are conventionally described by a set of square 
matrix operations called a representation. When these are expressed in their mathematically 
simplest block diagonal form this is called an irreducible representation or irrep. A represen-
tation has an order defined as the number of matrices, and a dimension defined by the dimen-
sion of the matrices.  

A phase transition can always be associated with a k point or wave vector in reciprocal 
space. This k point describes where extra reflections will be seen following the phase transi-
tion. For example, a phase transition associated with k point (½, 0, 0) (the X point of 𝑃𝑚 ሜͫ𝑚) 
will give a child with extra (h/2, k, l) reflections (or h′kl reflections using a doubled a axis 
with h′ = 2h). For a given parent space group, specifiying a k point defines a set of irreps. 
Each of these maps the symmetry elements onto a set of irreducible matrices. When a material 
undergoes a phase transition some of its symmetry elements are lost and some retained. Those 
that are retained define what is called the isotropy subgroup or distortion symmetry of the 
child.12 Since each irrep describes a set of parent symmetries that can be broken, they give us 
a “recipe” for lowering symmetry. The language used is that we superpose one (or more) ir-
reps on the parent space group and this takes us to a specific isotropy subgroup. Within a giv-
en isotropy subgroup, many different distortions are possible due to the different structural 
degrees of freedom the atoms are allowed. 

One convenient way to think about a specific distortion is in terms of its distortion vector. 
For the simple case of a single atom moving away from a high-symmetry site in 3D this is 
very intuitive. If we’re thinking of a more complex case involving multiple atoms moving we 
can use the same idea, but the distortion vector is harder to visualise as it lies in a higher di-
mensional vector space (more formally the carrier space in which the matrices of the space 



group representation operate). The distortion vector is invariant under the symmetry opera-
tions of the isotropy subgroup. As with any vector, if we can define a basis for it, we can de-
scribe it in terms of vector components along each of the basis vector directions. In the sym-
metry-mode approach the irreps are used as a complete and orthogonal basis to describe the 
distortion vector.  The irreps themselves are are simply linear combinations of traditional 
crystallographic parameters. 

Another important feature of the distortion vector is the order parameter direction or 
OPD. An OPD is a specific direction (or subspace) of the generalised distortion space within 
which each distortion vector represents structures with the same symmetry (remember that 
each different vector within this subspace represents a different specific distortion). The most 
general OPD of a three dimensional irrep is expressed as (a, b, c). A vector in this direction 
will give rise to a distortion symmetry known as the kernel. The kernel is the lowest distortion 
symmetry associated with an irrep. The same three dimensional irrep may have a one dimen-
sional OPD where, for example, b and c are zero or where a = b expressed as (a, 0, 0) or (a, a, 
0), respectively. These will lead to an intermediate distortion symmetry that is a subgroup of 
the parent and a supergroup of the kernel. A simple analogy is to think of moving a single 
atom in a cubic structure away from (0, 0, 0). If we move it in a general direction to (x, y, z) 
we will destroy certain symmetry elements; if we move it to (x, x, x) we would retain more 
symmetry. The variable parameters of an OPD are called branches. 

In the kernel we can define a distortion mode as a vector component along one of the irrep 
basis vectors; in one of the higher symmetries it may be a linear combination of different irrep 
basis vectors. The ISODISTORT definition of an order parameter is a distortion vector along 
a specific OPD of a specific irrep at a specific k-point of the parent symmetry. The parameters 
used to specify it are the individual distortion mode amplitudes (one for each branch of the 
OPD) and these are therefore order parameter components.  This is the link to the more fa-
miliar concept of the order parameter of a phase transition as a quantity that is zero above the 
transition and evolves in either a continuous or discontinuous way to a non-zero value below 
the transition.10  The magnitude of the distortion vector, which is itself defined by mode am-
plitudes, is the order parameter that describes the free energy associated with the transition. 

Putting all this together, during a symmetry-mode refinement we will refine the amplitude 
of each symmetry mode (a single parameter) which may influence the fractional coordinates 
of multiple atoms.  ISODISTORT identifies these modes by a label of the form 
𝑃𝑚 ሜͫ𝑚[ͩ ͪ⁄ , ͩ ͪ⁄ , ͩ ͪ⁄ ]𝑅ͬ

ା(𝑎, ͨ, 𝑏)[Oͩ: 𝑑: 𝑑𝑠𝑝]𝐸௨(𝑎).  Here 𝑃𝑚 ሜͫ𝑚 is the parent space group, 
[ͩ ͪ⁄ , ͩ ͪ⁄ , ͩ ͪ⁄ ] the k point (which is the R point of 𝑃𝑚 ሜͫ𝑚), 𝑅ͬ

ା is the three dimensional irrep 
label using Miller and Love notation13 and (𝑎, ͨ, 𝑏) is the two dimensional order parameter 
direction.  The final part of the label gives the Wyckoff site of the parent atom (O1) and the 
spectroscopic label for the Wyckoff site point group irrep that induces the distortion. 𝑑𝑠𝑝 la-
bels a displacive mode, while occ, mag, or rot would label occupancy, magnetic or rotational 
modes.  In some cases an additional order parameter number is appended (_1, _2) to distin-
guish different modes with the same local point group irrep. The final labels ‘a’ and ‘b’ dis-
tinguish the two branches of the two dimensional order parameter.  Sometimes you will see 
semicolons in OPD label, not commas.  These are used for cases where irreps of different 
symmetry equivalent k points in the parent group (e.g. 𝑘 =
(ͩ ͪ⁄ , ͩ ͪ⁄ , ͨ ); (ͩ ͪ⁄ , ͨ, ͩ ͪ⁄  ); (ͨ, ,ͩ ͪ⁄ , ͩ ͪ⁄  ) for the M point of 𝑃𝑚 ሜͫ𝑚) are active.  In ISO-
DISTORT amplitudes of displacive modes are defined as the square root of the sum of the 
squares of the mode-induced displacements within the primitive child cell in Å, and typically 
vary between around −2 and +2; the larger the amplitude the larger the structural distortions. 



3.3 WO3 phase transitions – the isotropy group subgroup tree 
From the previous sections we have the language in place to describe the WO3 phase transi-
tions using symmetry-modes.  We can start by taking the parent 𝑃𝑚3ሜ 𝑚 structure and super-
posing an 𝑀ଷ

ି irrep to lower the symmetry.  The OPD has six choices, each of which would 
lead to a subgroup with a different space-group type, origin choice and basis combination.  
The OPD that occurs is labelled P1(a; 0; 0) and moves alternating W atoms up or down the c-
axis of the parent unit cell leading to an antiferroelectric structure with a ~√2𝑎 × ~√2𝑎 ×

~𝑎 (hereafter simplified to √2 × √2 × 1) unit cell and space-group type 𝑃4/𝑛𝑚𝑚 (the struc-
ture is drawn in Figure 2).  We discuss below how this could be determined experimentally, 
but note that three structural parameters (a single mode amplitude for W and O and a c/a cell 
strain ratio) fully-describe the structure.  The next two transitions involve out-of-phase rota-
tions of WO6 octahedra around different axes.  Both can be described with 𝑅ସ

ା distortions 
relative to the parent structure (though note that irrep labels change when the unit cell chang-
es).  OPD 𝑅ସ

ା(𝑏, 0,0) leads to the 𝑃4/𝑛𝑐𝑐 structure and the more general OPD 𝑅ସ
ା(𝑏, 𝑐, 𝑐) to 

the lower-symmetry 𝑃2ଵ/𝑐 structure.  The specific combinations of 𝑀ଷ
ି and 𝑅ସ

ା are sufficient 
to define the symmetry of each structure, and these can be described as primary irreps.  When 
they are active, other irreps are activated (e.g. 𝑋ସ

ି, 𝑋ହ
ି, 𝑀ହ

ି, 𝑅ଷ
ା, 𝑅ହ

ା in the P21/c structure) 
which are called secondary irreps.  The corresponding modes may or may not have signifi-
cant amplitude. 

 

Figure 2: an 𝑀ͫ
ି mode describing antiferroelectric displacement of W atoms and an 𝑀ͫ

ା mode describing in-
phase tilting of octahedra.  A single mode amplitude displaces multiple atoms. 

The irreps leading to the other polymorphs are summarised in Figure 1.  Note that in some 
cases WO3 undergoes transitions between structures which don’t have a direct group-
subgroup relationship.  One example is the ~1000 K 𝑃ͪͩ/𝑐 structure on the right-hand part of 
the tree, which on further cooling has to “move up” the group-subgroup tree by losing some 
distortions (one of the 𝑅ͬ

ା tilts) before other distortions are introduced and it descends again 
down the left-hand pathway.  Similarly, once WO3 reaches the 𝑃ሜͩ structure on the left-hand 
pathway it jumps back to the right-hand pathway on further cooling.  We can think of this as 
the structure exploring an energy-lowering route on cooling which turns out to be a cul-de-
sac, and it has to backtrack to reach its global energy minimum on further cooling.  From the 
symmetry properties of the irreps we can predict whether a transition can be continuous (solid 
arrows) or has to be discontinuous (dashed arrows).  In a powder experiment a discontinuous 
transition would lead to abrupt changes in cell parameters.  This occurs, for example, for the 
𝑃ሜͩ to 𝑃𝑐 transition on cooling that was discussed in the notes on parametric refinement. 

The irrep labels can also contain useful information about property changes.  For example, 
the hypothetical transition from 𝑃ͪͩ/𝑐 to 𝑃𝑐 involves the 𝛤ି irrep.  Here the “−“ flags a loss 
of an inversion centre, and WO3 goes from a centrosymmetric-non-polar to polar (pyroelectric 
or potentially ferroelectric) form.  A 𝛤ା mode in any child represents a structural distortion 
that was also allowed in the parent. 



4. Example applications of symmetry-mode refinements 

Each of the structural transitions of Figure 1 increases the structural complexity of WO3.  In 
the room temperature 𝑃2ଵ/𝑛 structure there are 24 structural degrees of freedom (plus cell 
parameters).  These could be described with 24 xyz fractional atomic coordinates or 24 mode 
amplitudes.  As shown in the next section, it turns out that with the symmetry-mode approach 
only a few of these (5 to 7) are actually important, leading to an efficient structure description.   

Similarly, if the symmetry was lowered further to a ͪ × ͪ × ͪ cell with space group 𝑃ͩ, 
there would be 96 possible modes.  If we had a powder pattern of WO3 and could decide 
which of these 96 modes are actually needed to fit the data, we could determine the space 
group symmetry (from which modes/irreps are active) and the structure (from the amplitudes 
of these active modes) simultaneously.   

The complexity of analysing structures with these types of transitions can be appreciated 
by working out all the possible subgroups between the 𝑃𝑚 ሜͫ𝑚 parent and this hypothetical 𝑃ͩ 
structure, which we’ll call the base child.  It turns out that there are 1427 possibilities!  An-
other way of analysing a powder pattern of WO3 to determine the true structure would be to 
test each of these 1427 models in turn and decide which is best. 

The three key ideas of the previous paragraphs are exemplified in the following sections. 

4.1 Symmetry-mode refinements – reducing parameters 
Figure 3 shows the results of a Rietveld fit to 1123 K X-ray data of WO3 in its 𝑃4/𝑛𝑐𝑐 
√2 × √2 × 2 form.  In this case analysis using ISODISTORT (explicit details on how this is 
done are at https://topas.webspace.durham.ac.uk/tutorial_isoriet_wo3_advanced/) produces a 
Rietveld instruction file showing there are three allowed mode amplitudes.  As discussed 
above, two of these describe octahedral distortions and the third octahedral tilting.  The bot-
tom Rietveld fit in Figure 3 uses a simple cubic model.  The middle fit allows the a and c cell 
parameters to differ, and explains most of the strong peaks.  This constrained fit (mode ampli-
tudes all zero) is actually equivalent to a 𝑃4/𝑛𝑚𝑚 model with a 1 × 1 × 1 unit cell.  Note 
that a symmetry-mode refinement with the amplitudes of modes of specific irreps fixed at 
zero mimics a higher-symmetry space group.  The third fit allows the three mode amplitudes 
to refine and gives an excellent agreement between observed and calculated data. 

 
Figure 3: Rietveld fit to 1123 K data of WO3.  Lowest fit uses a cubic model.  Middle fit use a tetragonal model 

with mode amplitudes at zero, several super structure reflections are not explained.  Top fit refines the three 
symmetry-mode amplitudes. 

In this case three parameters are needed in either a symmetry-mode or conventional xyz 
description.  However, Figure 4 shows a fit to data of the room temperature P21/n monoclinic 
structure.  Here the lower plot shows a conventional Rietveld using 24 xyz parameters (𝑅௪௣ = 
9.0%) and the upper fit uses just five distortion mode amplitudes and gives an essentially 



equivalent fit with 𝑅௪௣ = 9.2%.  These amplitudes describe the various octahedral distortions 
and tilts that occur.  Even in a combined X-ray and neutron fit, the data can be well-described 
with just seven mode amplitudes, showing how concise the symmetry-mode description can 
be.  Step-by-step instructions on how to perform the fit of Figure 4 are available online 
(https://topas.webspace.durham.ac.uk/tutorial_isoriet_wo3_simple/). 

 

Figure 4: Rietveld fit to 300 K X—ray data of WO3.  Upper fit uses 5 symmetry-mode amplitudes.  Lower fit 
uses 24 xyz fractional atomic coordinates. 

4.2 Parameter conciseness and determining symmetry 
Another way to demonstrate the conciseness of the symmetry-mode description is shown in 
Figure 5.14  In this analysis we ignored the fact that the true space group of WO3 is P21/n and 
assumed a 2 × 2 × 2 cell with P1 symmetry, which has 96 possible mode amplitudes (or 96 
xyz coordinates).  We then did a “mode inclusion” test in which we refined each one of the 96 
mode amplitudes in turn against X-ray and neutron data and selected the mode that gave the 
lowest 𝑅௪௣.  We then refined this mode with each of the other 95 modes in turn to obtain the 
best two-mode description.  This was repeated until all 96 modes were included (4657 sepa-
rate refinements in total).  We also did the same thing but using individual x, y or z fractional 
coordinates instead of mode amplitudes.  To check reversibility, we repeated each process in 
reverse by starting with all 96 parameters included, then sequentially removing the single pa-
rameter with the least impact on the fit. 

 

Figure 5: Rwp values obtained as a function of the number of structural degrees of freedom using either sym-
metry modes or xyz parameters. Values from simultaneous fit to X-ray and neutron data. 

Figure 5 plots the 𝑅௪௣ values from this analysis and shows how efficient the mode param-
eter set is compared to xyz in this test.  We see that after adding ~7 modes there is no further 



improvement in fit with the symmetry-mode description, whereas over 60 xyz parameters are 
required for a similar fit.   

By looking at which seven modes are important we can do more.  It turns of that they be-
long to a small number of irreps (𝑅ͬ

ା, 𝑀ͫ
ା, 𝑀ͫ

ି, 𝑋ͭ
ା, 𝑋ͭ

ି).  If we take the irreps and OPDs and 
superpose them on the parent structure it uniquely defines the correct P21/n space-group type, 
basis and origin.  The space group and structure of the sample have therefore been “refined” 
simultaneously from the data. 

There are more general ways we can do the same thing using genetic algorithms in which 
we describe the active modes in the structure using a series of 96 1’s and 0’s [00101100…..] 
for active/inactive.  By testing populations of different structures against the data, ranking 
them by 𝑅௪௣ then mutating and breeding them using Darwinian evolution ideas, we can again 
identify the important modes and determine the symmetry and structure simultaneously.14 

4.3 Exhaustive searching of group-subgroup trees – Bi2Sn2O7  
Bi2Sn2O7 is a published example where the exhaustive searching of group-subgroup trees was 
necessary to understand its structures, and where complicated crystallography ultimately lead 
to a simple final picture.15  At high temperature Bi2Sn2O7 is a cubic pyrochlore (space group 
𝐹𝑑3ሜ 𝑚, a ≈ 10.75 Å) with just one refinable atomic coordinate.  On cooling it undergoes 
phase transitions to a - then -polymorph and becomes significantly more complex.  The 
literature contains many wrong descriptions of both structures. 

The true structures were determined with a symmetry-mode approach.  First, it was found 
that all the features of the X-ray and neutron high resolution powder patterns (splittings, su-
perstructure reflections) of all phases could be described with a P1 model with a ͪ × ͪ × ͪ 
superstructure.  This was defined as the base child, and a group-subgroup tree produced using 
ISODISTORT contained 547 possible candidate structures between the parent and base child.  
All structures were refined against neutron and X-ray data, and the candidate with a low 𝑅௪௣ 
and a sensible number of parameters determined for both  and .  All 547 fits of - Bi2Sn2O7 
are summarized in Figure 6a–c.   

 
Figure 6: Exploration of group-subgroup trees for -Bi2Sn2O7 by Rietveld refinement.  Panels (a), (b) and (c) 
plot Rwp for the 547 possible models by subgroup number, number of independent parameters and rank order, 
respectively.  The best model has a low Rwp for a small number of parameters and fits all aspects of the experi-
mental data.  The lower panels show how the structures of - and -Bi2Sn2O7 can be compared by plotting the 

amplitudes of the distortion modes relative to the parent cubic structure in a common subgroup.  The key differ-
ence is in the active 𝐿ͪ

ା OPD.   has 𝐿ͪ
ା(ͨ, 𝑎, ͨ,ͨ) and  𝐿ͪ

ା(−𝑎, 𝑎, ͨ,ͨ); these describe distinct shift patterns of 
Bi3+ cations. 



The  structure turns out to have space-group type Aba2 with a = 7.57 Å, b = 21.41 Å, c = 
15.12 Å and the  structure has space-group type Pc with a = 13.15 Å, b = 7.54 Å, c = 15.08 
Å,  = 125.01°. By examining the active modes in each (particularly a 𝐿ͪ

+
(ͨ, 𝑎, ͨ,ͨ) in  and 

𝐿ͪ
+

(−𝑎, 𝑎, ͨ,ͨ) in ) a simple picture of the phase transitions in terms of specific shifts of the 
active lone pair Bi3+ cation emerged.  This complex behaviour was later supported by DFT 
studies.16   

The work was all done using TOPAS17-18 in a fully automated way using Python scripts.  
Nowadays it can be done using a single TOPAS input file and the internal #list syntax to per-
form all the refinements. 

5. Other distortion modes 

The examples discussed in these notes involve atomic displacements which have the tensor 
properties of polar vectors.  A similar language can be used to describe phase transitions in-
volving site occupancies, which are scalar parameters.  Magnetic phase transitions, which 
involve the ordering of magnetic moments with both direction and spin, can be described us-
ing axial vectors or pseudo vectors.19-20  We can think of axial vectors as rotating cylinders 
describing the moment orientation through the vector orientation and its “up/down” nature 
through the direction of rotation (clockwise or anti-clockwise).  Magnetic structures can there-
fore be described in terms of the amplitude of magnetic symmetry modes.  Our view of axial 
vectors also suggests how an analogous language can be used to describe transitions involving 
molecular rotations.  The direction of the axial vector can be used to specify the axis of mo-
lecular rotation, and its length the magnitude of the angle of rotation.  Symmetry aspects of 
the phase transitions of molecular materials can then be explored in similar ways to those de-
scribed above, with low symmetry structures described in terms of the parent plus the ampli-
tude of Rietveld-refined molecular distortion modes.5, 21-22 

6. Conclusions and what next 

Try the tutorials at https://topas.webspace.durham.ac.uk/topas_user_menu/.  Several of these 
are based on the WO3 example in these notes.  There are step-by-step notes on using ISO-
DISTORT to understand transitions and on performing Rietveld symmetry-mode refinements. 
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