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1. Introduction/overview 

Previous lectures have shown how huge numbers of powder patterns can be collected on sam-
ples as a function of time, temperature, pressure or other variables (in situ studies), or on a 
system such as a battery or catalytic bed under working conditions (operando studies).  
Sources such as XFELs can provide thousands of patterns per second and, using pump-probe 
methods, at time resolution down to a few 100 femtoseconds.  Later lectures cover topics such 
as XRD-CT which again produce enormous bodies of powder data.  These notes contain some 
tips on automating the independent analysis of multiple patterns, which I’ll call sequential 
refinement.  They also outline the method of parametric refinement, where a large body of 
data is simultaneously fitted using a single evolving structural model.  This technique can 
allow extraction of more reliable structural information, or the direct extraction of non-
crystallographic information that one wouldn’t expect to derive from a crystallographic analy-
sis. 

2. Sequential Rietveld refinement 

Sequential Rietveld refinement, or the serial independent analysis of multiple patterns, just 
applies the fitting methods outlined in the chapter on Whole Powder Pattern Fitting multiple 
times.  Many Rietveld packages allow the user to automate this by setting up an initial 
Rietveld refinement, then using the same model to analyse a series of similar patterns.  Some 
packages do this via the gui; others work via a set of software-specific instructions in an input 
file; others can be controlled via a series of commands in .bat or .sh files of the computer op-
erating system, or through Python scripts. 

Some tips and tricks to control sequential refinements are given below.  They are written 
in terms of a variable temperature (T) experiment, but apply to most other situations: 

1. Refinements can be performed by using the results of one refinement (e.g. at T1) as the 
starting model for refinement T2, or by always starting from the same model.  The 
former approach means the starting model updates through the analysis, which can 
help convergence.  The latter approach can be helpful if parameters diverge at any 
point. 

2. The refinement should ideally be configured such that the same starting model will 
converge for every pattern recorded.  If this can be achieved, either approach in (1) 
should converge to the same answer. 

3. Individual phases can appear or disappear during an experiment.  Some software lets 
you flag the data sets where you want specific phases included in the model. 

4. Refinements are likely to diverge when a phase is included in the model, but not ob-
served in the data.  For example, peak shape parameters describing a missing phase 
may refine to give “infinitely broad” peaks which merely fit the background.  This 
slows the refinement, makes quantitative analysis of all phases incorrect, and can pre-
vent that phase from contributing to the fit when its peaks appear.  Consider tricks 
such as: limiting parameters to sensible values; restricting the parameters refined; 
equating parameters between phases; using restraints on derived quantities such as 
overall peak width.  Consider parametric methods. 

5. Consider setting minimum and maximum limits on parameters such that convergence 
always occurs.  These limits can be made temperature-dependent. 

6. Consider performing a few cycles of simulated annealing on each pattern analysed in 
which parameters are reset to values believed to be close-to-sensible after each con-
vergence. 

7. When cell parameters change substantially (e.g. at a discontinuous phase transition) it 
can be helpful to start refinements with a broad peak shape.  This allows some overlap 



between observed and calculated profiles and helps find the global minimum.  Consid-
er restricting the q-range in initial refinement cycles to get an initial estimate of cell 
parameters from data regions where peak overlap is lowest. 

8. Consider using non-standard restraints.  For example, if a sample undergoes a 1st order 
transition from orthorhombic to monoclinic with 𝛽 ≈ ͱͩ°, automated fitting of a two 
phase model close to the transition can be hard as the lower-symmetry monoclinic 
phase can distort to fit the peaks of the orthorhombic phase.  A soft restraint on the 
monoclinic angle of the form (ͱͩ − 𝛽)ͪ can prevent the monoclinic angle reaching ͱͨ° 
and stabilise the refinement. 

9. For data collected sequentially, try fitting the patterns from the start-to-end of the ex-
periment and also end-to-start.  If any aspect of the models differ, it suggests refine-
ments aren’t correctly converged. 

10. Plot all refined quantities to look for unexpected changes in parameters or agreement 
factors through the experiment.  Do this in an automated way (e.g. using Python 
scripts) so there’s no activation barrier to reanalysing everything with a different mod-
el.  A good plotting package will let you automatically colour-code data points to high-
light relationships with other parameters (e.g. parameterd value colour-coded by 𝑅௪௣) 
or shade the background to highlight different experimental conditions.  Packages like 
seaborn in python can produce remarkably informative plots with just a couple of 
commands (see the images at https://seaborn.pydata.org/tutorial/introduction.html); 
see also Figure 1. 

11. Ideally feed metadata from the experiment through the Rietveld pipeline.  This will 
help with automatic plotting, and lets you control the refinement according to the ex-
perimental conditions.  For example, cell parameters in each fit could be started at 
temperature-dependent values, or temperature-dependent limits could be placed on pa-
rameters. 

12. Consider using internal standards during the experiment.  The Rietveld analysis can 
then use peak intensities of the standard to help calibrate scale factor and weight % 
changes, or use the peak positions to calibrate sample temperature. 

13. In quantitative work don’t just plot the Rietveld-derived weight %s of each phase as 
these will be meaningless if a portion of the sample goes amorphous.  Output scale 
factors or scale×ZMV values.  The sum of scale×ZMVs across all phases should be 
constant throughout the experiment if everything remains crystalline, or just show a 
smooth evolution if scale factors correlate with, for example, atomic displacement pa-
rameters. 

14. Quantities such as 𝑅௪௣ or 𝜒ͪ should have similar values for each pattern and vary 
smoothly if all data are recorded under comparable conditions.  Any major fluctuations 
suggest the model is not appropriate for all patterns. 

15. Check predictable parameters show the temperature dependence expected.  For exam-
ple, if atomic displacement parameters don’t increase with temperature in a variable 
temperature experiment then either the model is incorrect or there’s interesting physics 
or chemistry at play.  If a cell parameter decreases rather than increases with tempera-
ture, then you’ve rediscovered negative thermal expansion.  Unexpected “humps” in 
cell parameters or site occupancies can reveal interesting and important things about 
kinetically-controlled processes in your sample.1-4   

 



 
Figure 1: A useful information-rich plot from sequential analysis (unpublished).  A few lines in a python script 

produce the plot above which was part of a study on a working catalyst bed under different conditions.  Data 
points show oxygen site occupancies in the catalyst bed extracted by Rietveld refinement.  The points are colour-
coded according to the gas flowing over the bed.  Arrows pointing up and down reflect the direction of gas flow 
through the bed.  The grey line shows the unit-cell parameter changes that occur, and the shaded bars on that line 

shows the standard uncertainties of oxygen occupancy.  The red and blue lines show the gases flowing off the 
reactor as analysed by mass spectrometry.  The background shading highlights different gases used.  During the 
operando neutron experiment thousands of diffraction patterns were analysed in real time and reaction progress 

followed using this type of plot. 

3. Parametric refinement 

Sequential or independent Rietveld refinement is normally the best method for analysing mul-
tiple powder patterns.  However, there are some cases where analysing a collection of patterns 
with a single constrained but evolving model is the best or only way to obtain an unambigu-
ous description of a changing system.  This is called parametric refinement.5  More details are 
given elsewhere6 and there are practical examples on how to do this online 
(https://topas.webspace.durham.ac.uk/tutorial_surface_new). 

The basic idea behind parametric refinement is that you know that some quantities influ-
encing a powder pattern must vary in a smooth or predictable way through a series of data 
collections.5, 7  For example, in a laboratory variable-temperature Bragg-Brentano experiment, 
the diffractometer zero-shift is unlikely to change during the experiment, whereas a quantity 
like the sample height will vary in a smooth way as the furnace heats and cools.  If these 
quantities correlate with parameters of interest (such as unit-cell parameters) then it might be 
best to refine their value (a single parameter for the zero-shift) or a simple function describing 
their temperature dependence (for the height) from all the data.   

The parametric approach is particularly useful for analysing complex data sets where 
phases appear and disappear without having to impose a priori assumptions on parameter 
values.  This is exemplified in the WO3 quantitative analysis example in Section 3.1.  Finally, 
it is also possible to set up refinement models in which certain parameters are described by 
specific well-known physical models.  This can lead to quantities such as sample temperature, 
kinetic rate constants or activation energies being directly refinable from powder diffraction 
experiments.  Examples of quantities that might be constrained, and the type of functions that 
might be used are given in Table 1; these can be applied to a range of different in situ and 
operand experiments.  Other applications of parametric fitting include the simultaneous fitting 
of patterns from multiple detectors as part of the data reduction on synchrotron beam lines.8 



Table 1: Examples of functions used in parametric refinements. 

Quantity Expression Comment 

Cell parameters or adps 𝑎(𝑇) = 𝑎଴+
𝑐ଵ𝜃ଵ

𝑒(ఏభ/்) − 1
 

Simple Einstein-like model with 𝑎଴ 𝑐ଵ 
and 𝜃ଵ as refinable parameters. Ensures 
a physically-sensible zero gradient at T 
= 0 K. 

Fractional coordinates 𝑥(𝑇) = 𝑥଴(1 + 𝑐ଵ𝑇 + 𝑐ଶ𝑇
ଶ + 𝑐ଷ𝑇

ଷ) Simple polynomial form. 

Critical behaviour 𝑜𝑐𝑐(𝑇) = 𝑐ଵ ൬1 −
𝑇

𝑇௖
൰
ఉ

 
Site occupancy, magnetic moment or 
other quantity related to an order pa-
rameter approaching a phase transition. 

Kinetic parameters 
𝑓𝑟𝑎𝑐(𝑡) = 𝑐ଵ൫1 − 𝑒ି௞೑ೝೌ೎௧൯ + 𝑐ଶ 
𝑐𝑒𝑙𝑙(𝑡) = 𝑐ଵ(1 − 𝑒ି௞೎೐೗೗௧) + 𝑐ଶ 

Simple rate expression. 𝑘(𝑡 − 𝑡଴) or 
𝑘(𝑡 − 𝑡଴)

௡ describe more complex 
evolution. 

Zero shift 𝑧𝑒𝑟𝑜(𝑡) = 𝑐𝑜𝑛𝑠𝑡 
Zero shift correction unchanging over 
all data sets. 

Sample height ℎ𝑒𝑖𝑔ℎ𝑡(𝑇) = ℎ଴(1 + 𝑐ଵ𝑇 + 𝑐ଶ𝑇
ଶ) 

Sample height as a smooth function of 
temperature. 

Temperature error Δ𝑇 = 𝑐଴(1 + 𝑐ଵ𝑇௦௘௧ + 𝑐ଶ𝑇௦௘௧
ଶ ) 

Offset between furnace set point and 
sample temperature as a smooth func-
tion. 

Equation of state 𝑎(𝑃) = 𝑎଴[(1 + 𝐾଴
ᇱ𝑃 𝐾଴⁄ )]ିଵ ൫ଷ௄బ

ᇲ൯⁄  
Pressure dependence of cell parameters 
e.g. Murnaghan EoS for a cubic mate-
rial. 

Energy dispersive profile 𝐼(𝐸) =
𝑎

𝐸
exp ቆ−

1

2
ቊ
𝑙𝑛[(𝐸 − 𝑏) 𝑐⁄ ]

𝑑
ቋ

ଶ

ቇ 
Lognormal function to describe energy 
profile for energy-dispersive diffrac-
tion. 

 
One criticism of parametric refinement is that imposing a constrained model across multi-

ple diffraction patterns may be a good idea with an appropriate function, but may be a disaster 
with an inappropriate one.  In fact, using an incorrect model can be an advantage of the meth-
od.  If the 𝑅௪௣ of an individual pattern (or series of patterns) in a parametric fit is significantly 
worse than others (or worse than in a sequential refinement), it indicates that the model is 
missing an essential descriptor of the chemistry, physics or crystallography.  This can easily 
be missed in sequential work where aspects of an unconstrained model can “distort” to “mop 
up” unfitted features in the data.  We’ll see examples of this below. 

3.1 WO3 phase transitions – quantitative parametric refinement through phase transitions 
WO3 is a compound that undergoes a series of phase transitions on cooling that involve small 
distortions of the corner-sharing WO6/2 octahedra, and their tilting relative to the cubic struc-
tural arisotype.  A figure showing all the structural changes is given in the notes on symmetry 
refinement.  Figure 2 shows a series of 100 diffraction patterns recorded on cooling WO3 
from 300 to 90 K.  Over this temperature range the sample changes first from a monoclinic 
P21/n structure to triclinic 𝑃1ሜ , then to monoclinic Pc at the lowest temperature.  As the ap-
proximate structures of all three phases are known, determining the amount of each present as 
a function of temperature should be straightforward using a three-phase Rietveld analysis.  
Unfortunately, the similarity of the three structures makes this difficult.  For example, if we 
look at the zoomed 2 range of 22–25 degrees in Figure 2c we see that all three structures 
predict hkl reflections of similar intensity in similar places.  If we were to try and fit the room 
temperature data (where the sample is predominantly P21/n), it turns out that the lower sym-
metry 𝑃1ሜ  structure can always give an equivalent or better fit (it has all the structural degrees 
of freedom of P21/n plus some extra ones).  Figure 3a shows the apparent weight % extracted 
from a series of sequential independent refinements in which 56 parameters were refined 
against each pattern.  Each refinement was deliberately started from the correct (determined 



parametrically) minimum for that temperature, and several cycles of simulated annealing were 
performed to ensure the best fit.  The extracted weight %’s show a temperature evolution that 
doesn’t make physical sense: weight %s increase and decrease abruptly with temperature.  In 
addition, the unit-cell parameters of each individual phase (Figure 3b) depart significantly 
from the smooth evolution with temperature expected. 

 

Figure 2: (a) Phase transitions of WO3. (b) room temperature X-ray Rietveld fit. (c) Zoom of fit; blue solid line 
is P21/n and gray 𝑃ሜͩ. (d) Parametric fit of the same region across all 100 powder patterns. 

Figure 3c and 3d demonstrate how these problems can be avoided in a parametric refine-
ment.  In this fit we make three straightforward assumptions: (1) the cell parameters of each 
phase vary smoothly with temperature (though we don’t impose values); (2) fractional atomic 
coordinates of each phase vary smoothly with temperature; and (3) each phase has a tempera-
ture-independent peak shape.  All 100 patterns can then be fitted in a single Rietveld refine-
ment with 1167 parameters (far fewer than the 5600 parameters refined sequentially).  The 
extracted weight %’s in Figure 3c then show a sensible temperature dependence.  In essence 
what’s happening is that the portions of the data where a phase is present, and its behaviour is 
therefore well-defined by the data, are controlling the overall model in regions where that 
phase is not present.  For example, if the 𝑃ሜͩ structure were to distort to artificially fit patterns 
close to room temperature, it would no longer be able to fit the ~200 K patterns where it is 
present.  Similarly, we avoid problems such as peak shapes becoming infinitely broad and just 
fitting the background as they are controlled by regions of the data were the phase is really 
present.  Note that we are imposing a simple physical behaviour on parameters of minor inter-
est (the unit-cell parameters) to get better information on the parameter of interest (weight %).  
This is done without any assumption about the actual values of parameters, just that they fol-
low a sensible temperature-dependence. 



 

Figure 3: Evolution of weight % and unit cell volumes from (a), (b) sequential fitting and (c), (d) parametric 
fitting. 

3.2 Non-crystallographic information from parametric refinement 
The parametric approach can also be used to gain information on non-crystallographic param-
eters.  One example is in determining the true temperature of a sample during an in-situ pow-
der experiment where it might differ from the furnace set point (𝑇௦௘௧) due to its position rela-
tive to the thermocouple, due to the presence of flowing gases, or due to heat evolved during a 
chemical process (Figure 4a).  One trick in these cases is to use an internal standard whose 
thermal expansion has been measured by diffraction or dilatometric techniques (which can be 
very high precision), and to use its cell parameter to infer the true temperature.  In a lab exper-
iment things are still not straightforward as peak positions of both the standard and sample are 
influenced by temperature offsets from the furnace set point Δ𝑇(𝑇௦௘௧), zero-shift errors and 
sample height errors.  In a parametric refinement the cell parameter(s) of the standard can be 
described using published thermal expansion data of the form 𝑎଴(1 + 𝑏(𝑇௦௘௧ + Δ𝑇) +
𝑐(𝑇௦௘௧ + Δ𝑇)ଶ) where 𝑎଴ is known approximately, 𝑏 and 𝑐 known coefficients and Δ𝑇 is de-
scribed by a low order polynomial as in Table 1.  The parameters of the Δ𝑇 polynomial, sam-
ple height, zero-shift and 𝑎଴ can be derived from all the data simultaneously to obtain a 
smooth temperature calibration curve Δ𝑇(𝑇௦௘௧).  It’s also possible to use two internal stand-
ards, one with low expansion and one with high expansion, to derive the temperature from the 
difference in expansion, such that absolute knowledge of the standard cell parameters isn’t 
required. 

For materials undergoing a structural change as a function of time, quantities such as cell 
parameters or site occupancies can be described with kinetic expressions such as 𝑐ͩ(ͩ − 𝑒ି௞௧) 
and rate constants 𝑘 can then be refined directly from the data.  In experiments where material 
evolution as a function of time and temperature has been measured, the temperature depend-
ence of the rate constant can be expressed with an Arrhenius-like expression 𝑘 = 𝐴𝑒ିாಲ ୩ా்⁄  
(k୆ = Boltzmann constant) and activation energies 𝐸஺ can be extracted directly from a para-
metric refinement. 



 

Figure 4: Left: unit cell parameters of ZrP2O7 close to a phase transition derived either sequentially (open points) 
or parametrically (closed points) on warming (red) and cooling (blue).9-10 A parametric temperature calibration 
gives significantly lower uncertainty in cell parameters. The uncorrected phase transition temperature, Tc, from 

the furnace set point was ~520 K whereas the parametrically refined Tc of 567–571 K agreed perfectly with DSC 
data. Right: a comparison between parametrically (red solid line) and sequentially (blue points) refined site oc-
cupancies for an order-disorder phase transition in ZrWMoO8.2 The parametric approach allows direct Rietveld 

refinement of the rate constant, kfrac. 

4. Conclusions and what next 

Information from multiple powder patterns can give enormous insights in many areas of mate-
rials science.  In most cases information can be extracted using sequential Rietveld refine-
ment, but there are cases where a parametric approach is essential.  Software-specific methods 
can be explored in the workshops.  Tutorials showing how this can be done in TOPAS are 
available online (https://topas.webspace.durham.ac.uk/topas_user_menu/). 
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