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1. Introduction and overview 

Previous lectures in the school have covered the fundamentals of scattering and powder diffraction; how 
to collect good quality experimental data and how to identify known phases from these data.  We then 
learned how it is possible to begin to determine new crystal structures by indexing peaks in a powder 
diffraction pattern to obtain unit-cell parameters. Once the Bravais lattice and unit-cell parameters have 
been ascertained, the space-group symmetry can be determined through an analysis of systematic 
absences.  The final stages in structure determination, the refinement of the crystal structure parameters 
involve (i) verifying the choice of unit cell and space group, (ii) obtaining a starting structural model and 
(iii) final structural refinement.  Each of these stages rely on the quantitative analysis of intensity 
information in the powder pattern.  This process runs up against the most widely discussed challenge of 
working with powder diffraction data: the accidental or non-accidental (e.g. the (300) and (221) reflections 
of a cubic sample) overlap of individual hkl reflections in the1D dataset.  This makes the determination 
of individual Ihkl intensities difficult for accidental overlap and impossible for non-accidental overlap. 

An effective solution to the overlap problem was reported in breakthrough papers in the late ൫൳൰൪s,൫-൬ 
which described how the whole powder pattern could be simultaneously fitted point-by-point using (i) an 
empirical function to describe the background between Bragg peaks, (ii) peak positions constrained by 
unit-cell parameters, (iii) peak shapes described by simple empirical functions (initially Gaussian 
functions), (iv) reflection intensities described by a structural model that can be refined and (v) terms to 
describe any experimental aberrations (e.g. the diffractometer zero-point). This one-step process removed 
the need to extract individual intensities, and was formally called Rietveld analysis in ൫൳൱൲. A typical 
profile fit from a Rietveld analysis is shown in Figure ൫. 

Since that time similar methods have been developed for structure-independent fitting of powder 
patterns – most commonly using the Pawley൭ or Le Bail൮-൯ methods. Freestyle methods can also be 
effective in early stages of the diffraction analysis where individual peaks may be fitted without the 
necessity of unit-cell determination.  Approaches analogous to Rietveld analysis also underpin some 
structure solution methods, methods for quantitative analysis, as well as methods for extracting purely 
microstructural information from powder data.  As the fitting process involved in many of these is similar, 
we will discuss them together under the collective term of “Whole Powder Pattern Fitting” (WPPF).  We 
will follow the same sequence as the historical development of the methods and introduce ideas using 
structural (Rietveld) refinement before summarising the key differences in structure-independent 
methods.  There are a number of excellent specialist texts that cover the method and its historical 
development in depth.൰-൫൫  There is also a very useful set of Rietveld guidelines published by McCusker et 
al. in ൫൳൳൳.൫൬ 

2. WPPF by least squares – a mathematical overview 

At its core, WPPF is a constrained mathematical fitting challenge.  The aim is to develop a model which 
describes all aspects of the powder diffraction pattern (background, peak positions, peak shapes and peak 
intensities) such that the information of interest can be extracted.  In a classic Rietveld analysis, the 
structural model, consisting of atom positions, occupancies and thermal motion, determines the peak 
intensities as it is the structure that is of interest.  In a Pawley or Le Bail analysis, it is the intensities that 
are of principal interest.  In other analyses, such as microstructure determination, the significant 
information is mostly derived from the peak shapes. 

 



 
Figure ൫: A typical fit to a powder diffraction pattern using the Rietveld method.  Observed data are shown in blue, 

calculated in red and the difference in pink.  The green line shows the cumulative-𝜒ͪ and the grey line in the insets shows the 
fitted background.  The high-angle inset is shown on a square root scale to emphasise weak features.  Vertical blue tick 

marks show the calculated positions of different hkl reflections.  See the text for discussion of all these quantities. 

 

As discussed in previous lectures, a powder diffraction pattern can be obtained from a range of 
radiation sources (X-rays, neutrons, electrons) using a variety of sources (home-lab facilities, 
synchrotrons, neutron sources or XFEL facilities) and with different types of detectors.  The diffraction 
pattern is generally reduced to a digital form of N consecutively measured intensities 𝑦௢௕௦,௜ at positions 

𝑋௢௕௦,௜ where 𝑖 ϵ [ͩ, . . , 𝑁] and 𝑋௢௕௦,௜ might be diffraction angle ൬, momentum transfer q, energy E, or time-

of-flight.  There will also be experimental uncertainties 𝜎൫𝑦௢௕௦,௜൯ associated with each intensity.  With a 

traditional point detector, Poisson statistics apply such that 𝜎൫𝑦௢௕௦,௜൯ = ඥ𝑦௢௕௦,௜  For more complex 

experiments 𝜎൫𝑦௢௕௦,௜൯ should be extracted as part of the data reduction process. 

A general expression for the calculated intensity 𝑦௖௔௟௖,௜ at any point in a powder pattern of a multiphase 
sample is: 

𝑦௖௔௟௖,௜ = ෍ ቌ𝑆௣௛ ෍ ቀห𝐹௖௔௟௖,𝐬,௣௛ห
ଶ

𝛷𝒔,௣௛,௜𝐶𝑜𝑟𝑟𝐬,௣௛,௜ቁ

𝐬(௣௛)

ቍ + 𝐵𝑘𝑔௜

௣௛

(Eq. 1) 

Here the outer sum runs over all the crystalline phases in the sample while the inner sum runs over each 
s = (hkl) reflection of phase ph which contribute significant intensity to position i in the pattern.  𝐹௖௔௟௖,𝐬,௣௛ 
is the calculated structure factor of the reflection, 𝛷𝒔,௣௛,௜ is the value of the profile function at point i 
relative to the position of the Bragg reflection, and 𝐶𝑜𝑟𝑟𝐬,௣௛,௜ is the product of all the correction functions 

that need to be applied to relate the structure factor and the reflection intensity.  𝐵𝑘𝑔௜ describes the 
background at point i.  Note that some points in the pattern might receive contributions from multiple hkl 
reflections (e.g. high q regions for complex structures with broad reflections) and some from none (low 
q, simple structures, sharp peaks). Similar expressions hold for Pawley and Le Bail fitting, but the 
structure factor and correction terms are no longer calculated from a structural model. 



To fit the pattern, most Rietveld packages use least squares methods൫൭-൫൮ to minimize the objective 
function S where: 

𝑆 = ෍ 𝑤௜ ቀ𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜(𝐩)ቁ
ଶ

ே

௜ୀͩ

(Eq.  2) 

In this expression 𝑦௖௔௟௖,௜ is shown as depending on the various parameters pj in the model via the parameter 
vector p.  The vector will look like: 

𝐩 = ൭

𝑝ଵ

⋮
𝑝௉

൱ (Eq.  3) 

and has size P, where P is the number of independent parameters in the model.  In a least squares fit the 

weights 𝑤௜ in Eq. 2 are related to the experimental uncertainties by 1 𝜎൫𝑦௢௕௦,௜൯
ଶ

⁄ . 

If the function 𝑦௖௔௟௖,௜(𝐩) were linear, then the parameters giving the minimum value of S in Eq. ൬ (our 
best-fit model) could be directly obtained using standard mathematical tools – the problem is analogous 
to fitting the linear function 𝑦 = 𝑚𝑥 + 𝑐 to a set of (x, y) data points.  Unfortunately, the equations in 
diffraction are more complex and we need to adopt a non-linear iterative fitting approach.  

For non-linear least squares we require an initial set of estimated starting parameters 𝑝ͩ … 𝑝௉  (our 
“starting model”).  In structural analysis, these parameters may be obtained from materials with similar 
structures, or from the structure solution methods discussed by Prof. McCusker.  
Since 𝑦௖௔௟௖,௜ =  𝑓(𝑝ͩ, 𝑝ͪ, … , 𝑝௉), we can use the starting parameters to calculate 𝑦௖௔௟௖,௜ for each point in 
the pattern.  Unless we are exceptionally fortunate, these parameters will not give the lowest value of 
(𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜ )

ͪ at each point i; S will not be minimised and, consequently, the model is not correct.  

The mathematics underlying non-linear least squares is as follows:  if we knew how much to change 
each parameter by (∆𝑝௝) such that 𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜ became as close-to-zero as possible, we could simply 
apply these ∆𝑝 shifts to the starting model to find the best-fit model.  With this in mind, we can express 
the change in intensity on changing parameters from an initial estimate 𝐩𝟎 to 𝐩 using a Taylor series (with 
just the first terms retained) as: 

𝑦௖௔௟௖,௜(𝐩) ≈ 𝑦௖௔௟௖,௜(𝐩𝟎) + ൬
𝜕𝑦௖௔௟௖,௜

𝜕𝑝ଵ

൰ ∆𝑝ଵ + ൬
𝜕𝑦௖௔௟௖,௜

𝜕𝑝ଶ

൰ ∆𝑝ଶ + ⋯ + ൬
𝜕𝑦௖௔௟௖,௜

𝜕𝑝௉

൰ ∆𝑝௉ (Eq.  4) 

and try to determine not the parameters but the parameter shifts ∆𝐩 = 𝐩 − 𝐩𝟎.  This turns a non-linear 
optimisation into a series of small linear steps.   

Combining Eq. ൬ and Eq. ൮, the objective function can be written as: 

𝑆 = ෍ 𝑤௜ ൮𝑦௢௕௦,௜ − ቌ𝑦௖௔௟௖,௜(𝐩𝐨) + ෍
𝜕𝑦௖௔௟௖,௜(𝐩𝐨)

𝜕𝑝௝

∆𝑝௝

௉

௝ୀͩ

ቍ൲

ଶ
ே

௜ୀͩ

(Eq.  5) 

To find the minimum we need the first derivative with respect to the refined parameters, and we introduce 
subscript k to avoid confusion: 

డௌ

డ௣ೖ
= −2 ∑ 𝑤௜ ቆ𝑦௢௕௦,௜ − ൬𝑦௖௔௟௖,௜(𝐩𝐨) + ∑

డ௬೎ೌ೗೎,೔(𝐩𝐨)

డ௣ೕ
∆𝑝௝

௉
௝ୀͩ ൰ቇ

డ௬೎ೌ೗೎,೔(𝐩𝐨)

డ௣ೖ

ே
௜ୀͩ

= −2 ∑ 𝑤௜ ቆቀ𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜(𝐩𝐨)ቁ
డ௬೎ೌ೗೎,೔(𝐩𝐨)

డ௣ೖ
− ∑

డ௬೎ೌ೗೎,೔(𝐩𝐨)

డ௣ೕ

డ௬೎ೌ೗೎,೔(𝐩𝐨)

డ௣ೖ
∆𝑝௝

௉
௝ୀͩ ቇே

௜ୀͩ

(Eq.  6) 



Since 
డௌ

డ௣ೖ
= ͨ at the minimum, it follows that: 

෍ 𝑤௜ ෍
𝜕𝑦௖௔௟௖,௜(𝐩𝐨)

𝜕𝑝௝

𝜕𝑦௖௔௟௖,௜(𝐩𝐨)

𝜕𝑝௞

∆𝑝௝

௉

௝ୀͩ

= ෍ 𝑤௜

ே

௜ୀͩ

ቀ𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜(𝐩𝐨)ቁ
𝜕𝑦௖௔௟௖,௜(𝐩𝐨)

𝜕𝑝௞

ே

௜ୀͩ

(Eq.  7) 

Changing the summations on the left side leads to: 

෍ ෍ 𝑤௜

𝜕𝑦௖௔௟௖,௜(𝐩𝐨)

𝜕𝑝௝

𝜕𝑦௖௔௟௖,௜(𝐩𝐨)

𝜕𝑝௞

∆𝑝௝

ே

௜ୀͩ

= ෍ 𝑤௜

ே

௜ୀͩ

ቀ𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜(𝐩𝐨)ቁ
𝜕𝑦௖௔௟௖,௜(𝐩𝐨)

𝜕𝑝௞

௉

௝ୀͩ

(Eq.  8) 

This equation is linear in the parameter shifts ∆𝐩.  There will be one equation for each 𝑝௞ and the set of 
equations can be concisely expressed in matrix notation as: 

𝐀∆𝐩 = 𝐘 (Eq.  9) 

with the components of the P × P matrix A (each k corresponds to a matrix row and each j corresponds to 
a column) given by: 

𝐴௞௝ = 𝐴௝௞ = ෍ 𝑤௜

𝜕𝑦௖௔௟௖,௜(𝐩𝐨)

𝜕𝑝௝

𝜕𝑦௖௔௟௖,௜(𝐩𝐨)

𝜕𝑝௞

ே

௜ୀͩ

(Eq.  10) 

and the P components of the vector Y by: 

𝑌௣ = ෍ 𝑤௜

ே

௜ୀͩ

ቀ𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜(𝐩𝐨)ቁ
𝜕𝑦௖௔௟௖,௜(𝐩𝐨)

𝜕𝑝௞

(Eq.  11) 

The equations in Eq. ൳ are called the normal equations of least squares and can be solved by pre-multi-
plying each side of the equation by 𝐀ିͩ to give the parameter shifts ∆𝐩 which should be applied to the 
model. 

𝐀ି𝟏𝐀∆𝐩 = ∆𝐩 = 𝐀ି𝟏𝐘 (Eq.  12) 

In practice the approximations made in the Taylor series of Eq. ൮ mean that this recipe is not perfect 
and won’t immediately give the best-fit model.  The process is therefore iterated multiple times, ideally 
with an improvement between 𝑦௖௔௟௖,௜ and 𝑦௢௕௦,௜ on each iteration.  The process is stopped when no further 
improvement is observed in the fit (i.e. there is no significant reduction in S), or the parameter shifts 
become comparable to their uncertainties.  These uncertainties, and the covariance between different pa-
rameters, can be extracted from the inverse matrix 𝐀ିͩ normalized by the reduced χͪ. (Eq. ൬൰ later).  Crit-
ical analysis of this variance-covariance matrix to assess model reliability is a crucial part of all WPPF 
methods. 

Much of the work of WPPF software goes into the manipulation of the matrices in Eq. ൳ and solution 
of the normal equations.  Modern software packages incorporate a number of mathematical tools to ensure 
that the fit improves on each cycle and that the refinement doesn’t diverge due to mathematical instabili-
ties.  Some programs issue warnings about the determinant of matrices being small.  These are flagging 
that the least squares process is unstable.  A small determinant of the 𝐀 matrix means large values in 𝐀ିͩ 
and therefore large uncertainties in the refined parameters. 

3. Constraints and restraints 

The useful information content of a powder diffraction pattern is often low due to peak overlap or a limited 
X range.  In these cases it may be helpful to include extra information in the refinement in the form of 
constraints or restraints (sometimes confusingly called “soft constraints”). 



Constraints are strict instructions imposed on the refined model.  For example, when refining the struc-
ture of an organic compound you might force a benzene ring to be a rigid hexagon with an edge of ൫.൭൳ Å 
surrounded by ideally placed hydrogens, and just refine its position and orientation in the unit cell.  This 
reduces the number of parameters from ൭൰ to ൰.  For an inorganic material you might want to force a ZrO൰ 
group to be a perfect octahedron.  Symmetry operators imposed by the space-group symmetry are another 
form of constraint.  For example, in a C-centred cell if there is an atom at (x, y, z) then there must be 
another at (x+½, y+½, z).  Constraints are built into the left-hand side of Eq. ൳ by changing the equations 
that are solved.  This ensures appropriate parameter shifts are applied to the model such that the constraints 
are obeyed. 

Restraints are softer pieces of information used to guide a refinement.  In the benzene case you might 
restrain all C–C bonds to be equal, all C–H bonds to be equal and the atoms to be approximately co-
planar; instead of using a rigid ZrO൰ octahedron you might introduce restraints that all the Zr–O bonds are 
around ൬.൪൱൯ Å and the O–Zr–O angles are close to ൳൪° or ൫൲൪°.  Mathematically the restraints are treated 
like extra experimental observations and appear on the right-hand side of Eq. ൳.  The quantity minimized 
by least squares then becomes: 

𝜒 ୲୭୲ୟ୪
ଶ = 𝜒 ୢୟ୲ୟ

ଶ + 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝜒 ୰ୣୱ୲୰ୟ୧୬୲ୱ
ଶ (Eq.  13) 

with some weighting between the two contributions.  𝜒 ୢୟ୲ୟ
ଶ  is related to the least squares objective func-

tion and defined later in Eq. 26.  𝜒 restraints
2  can be expressed in multiple ways but will often contain terms 

like (𝑑୧ୢୣୟ୪ − 𝑑୫୭ୢୣ୪)
ଶ, which reduce to zero when the distance in the model equals the ideal value.  Some 

software packages use the term “penalties” and “restraints” for subtly different ways in which this type of 
idea is applied. 

Most software packages will apply an appropriate overall weighting between 𝜒 data
ͪ  and 𝜒 restraints

ͪ .  The 
𝜒 restraints

ͪ  term can, however, contain multiple contributions (distance restraints, angle restraints, planar 
restraints, occupancy restraints, etc.).  The relative weighting of these is typically set by the user based on 
their scientific judgement.  It is important that the relative and overall weights are set appropriately.  If 
the overall weighting of restraints is too high, then the refinement will obey them in preference to fitting 
the data (in the limit they behave like constraints).  There is no value in reporting a refined Zr–O distance 
of ൬.൪൱൯ Å if that value is forced by a user-restraint.  Information on restraints and their weighting should 
be included in any publication. 

4. Quantities typically refined in WPPF 

The parameters refined in WPPF can be separated in various ways.  One is to split them into contributions 
from the instrument and sample as in Table 1.  Another is to separate them into parameters that influence 
the four main information regions of a powder pattern: the background, the peak positions, the peak 
shapes, and the peak intensities.  We will follow this latter approach and discuss a few WPPF-relevant 
points on each. 

4.1 Background 

In most WPPF analyses the background between Bragg peaks is not of direct interest (though it is crucially 
important in PDF or diffuse scattering work).15-16  It is most commonly fitted using a smoothly varying 
function such as a Chebyshev polynomial or a cosine Fourier series.  In the early days of the Rietveld 
method, the background was described manually via straight-line segments between fixed points; this 
approach is rarely used nowadays. If there is a significant background contribution due to the sample 
environment,  it is good practice to measure this separately and either subtract it (often in fitted form) 
from the experimental data or include it as an extra fitted quantity during refinement.  If the origin of the 



background is well understood (e.g. diffuse scattering due to a capillary or from specific disorder in the 
sample) it can be described using simple analytical functions.  Ideally a function (or combination of func-
tions) should be chosen that fits the observed background to within experimental uncertainty and doesn’t 

correlate with parameters of interest. Visualising fits on a ඥ𝑦 scale can help assess the quality of a back-
ground model. 

Table 1: Selection of instrumental and sample effects influencing position (as a shift) and/or intensity (as a correction factor) 
and/or peak shape (as a convolution) of the Bragg reflections which might be included in a Rietveld refinement.  Adapted 
from the text by Dinnebier, Leineweber and Evans.7 

Instrument factors Sample factors 

 Pos’n 
(shift) 

Int. 
(factor) 

Profile 
(convo-
lution) 

 Pos’n 
(shift) 

Int. 
(factor) 

Profile 
(convo-
lution) 

Zero shift x   Linear absorption/ transparency x x x 

Specimen displacement x   Surface roughness  x  

Equatorial divergence (fixed slit)   x (An)isotropic microstrain   x 

Equatorial divergence (variable slit)  x x (An)isotropic crystallite size   x 

Size of source (equatorial plane)   x Preferred orientation  x  

Specimen tilt   x Extinction  x  

Receiving slit length (axial plane)   x Overspill  x  

Receiving slit width (eq’l plane)   x Reflection multiplicity  x  

Emission profile  x x Phase fraction  x  

Tube tails   x Fractional atomic coordinates  x  

Axial divergence (Sollers etc) x  x Site occupancy  x  

Lorentz-polarization  x  Displacement parameter  x  

 

4.2 Peak positions 

As discussed elsewhere in the school, the peak positions in a powder pattern are influenced by many 
factors.  The most important structure-related parameters are the unit-cell parameters, which should usu-
ally be refined in whole-pattern fitting.  They are typically very well defined by a good powder experiment 
and indeed are usually superior to single crystal diffraction values.  They also do not correlate strongly 
with other structural parameters.  Instrumental effects such as the zero-point shift, sample height or offset 
errors and sample transparency (in Bragg-Brentano geometry) will also shift peak positions and correc-
tions for these are often refined.  One of the most common “Rietveld crimes” is failing to realise that these 
correction terms can be highly or, indeed, completely correlated with one another and with the unit-cell 
parameters.  For example, while the 2 dependence of a zero-shift and sample-height correction differ for 
a Bragg-Brentano measurement, they normally cannot be refined simultaneously.  On a well-maintained 
lab instrument height errors normally dominate peak shifts. On synchrotron powder diffractometers, the 
asymmetry correction associated with the finite sample size correlates strongly with the unit-cell param-
eters and the zero-point.  

To obtain both precise and accurate unit-cell parameters it is crucial to treat factors leading to peak 
asymmetry and peak maxima shifts correctly.  This is particularly true with the inherently asymmetric 
peaks in time-of-flight neutron data.  One effective approach is to fit an external or internal standard such 



as NIST Si with fixed cell parameters, determine any corrections required, then apply identical corrections 
to the sample of interest.  Parameters such as the wavelength of X-ray radiation and flight-path-length-
related calibration constants of time-of-flight diffractometers scale linearly with cell parameters, so must 
not be refined simultaneously! 

4.3 Peak shapes 

As discussed elsewhere in the course, the peak shape observed in a powder diffraction experiment is a 
combination (strictly a convolution) of effects due to the instrument and the sample: 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑝𝑒𝑎𝑘_𝑠ℎ𝑎𝑝𝑒 = (𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡⨂𝑠𝑎𝑚𝑝𝑙𝑒)(𝑋) (Eq.  14) 

The instrumental contribution is often called the instrumental resolution function (IRF).  There are mul-
tiple contributions to both the instrumental and sample terms, and they combine to give a profile that can 
vary in width, shape and asymmetry as a function of X.   

In the earliest Rietveld refinements, which used low resolution constant wavelength neutron data, 
Gaussian functions were used to model the peaks.  The ൬-dependence of their full width at half maximum 
(fwhm) was described using expressions such as: 

𝑔𝑎𝑢𝑠𝑠_𝑓𝑤ℎ𝑚 = ඥ𝑈 tanଶ 𝜃 + 𝑉 tan 𝜃 + 𝑊 (Eq.  15) 

with U, V and W refinable parameters (the Cagliotti function).17  For laboratory X-ray data, it is common 
to include a Lorentzian component to the peak shape with a fwhm described by expressions such as: 

𝑙𝑜𝑟_𝑓𝑤ℎ𝑚 = 𝑋 cos 𝜃 + 𝑌 tan 𝜃⁄ (Eq.  16) 

Gaussians and Lorentzians can be described with the expressions:11 

𝐺 =
C଴

ଵ ଶ⁄

𝑓𝑤ℎ𝑚 ∙ 𝜋ଵ ଶ⁄
exp ቆ

−C଴(2𝜃௜−2𝜃௛௞௟)
ଶ

𝑓𝑤ℎ𝑚ଶ
ቇ (Eq.  17) 

𝐿 =
Cଵ

ଵ ଶ⁄

𝑓𝑤ℎ𝑚 ∙ 𝜋
1 ቈ1 + Cଵ

(2𝜃௜ − 2𝜃௛௞௟)
ଶ

𝑓𝑤ℎ𝑚ଶ
቉ൗ (Eq.  18) 

where C଴ = 4 ln 2, Cଵ = 4 and 2𝜃௛௞௟  is the ideal peak position. 

Nowadays, the most commonly-used empirical peak shapes in Rietveld fitting of constant wavelength 
data are Voigtian or pseudo-Voigt functions.  A Voigt is a convolution of a Gaussian and Lorentzian.  The 
simplest expression of a pseudo-Voigt is a linear mixing of a Gaussian and Lorentzian: 𝑃𝑉 = 𝜂𝐿 +
(ͩ − 𝜂)𝐺 with 𝜂 a mixing coefficient (ͨ ≤ 𝜂 ≤ ͩ).  Many Rietveld packages use the Thompson-Cox-Has-
tings (TCHz) pseudo-Voigt function which includes an additional 𝑍 cosͪ 𝜃⁄  term in Eq. ൫൯, and where the 
mixing component is not refined but is set by the combination of the refinable parameters U, V, W, Z, X 
and Y.൫൲  Whilst this is often treated as a purely empirical function, the ൬ dependence of some of the terms 
are related to size (ͩ cos 𝜃⁄ ) and strain (tan 𝜃) effects in the sample.  A wide variety of other empirical 
peak shape functions have been employed in different software packages, and details can be found in the 
literature.൰-൱, ൫൫ 

At the other extreme to this empirical approach, peak shapes can be described using the so-called 
fundamental parameters approach.  Here the contribution of every aspect of the instrument (radiation 
source, slits, collimators, detectors, sample geometry, etc) and sample (size, strain, faults, transparency, 
thickness, etc.) to the peak shape is modelled using a physically meaningful function.൫൳-൬൯  This can allow 
the description of remarkably complex peak shapes with a small number of refinable parameters.  Sepa-
rating the contributions from the sample and instrument can also allow the extraction of meaningful in-
formation about microstructure. 



A half-way house between these two extremes is a semi-empirical approach whereby the IRF is meas-
ured using a highly crystalline, strain-free sample (often LaB൰ or annealed CeO൬ on a lab instrument).  
This is the authors’ standard approach.  The peaks of this standard are then fitted with any combination 
of empirical and fundamental-parameters-like expressions that are needed.  When a sample of interest is 
analysed, the parameters of the empirical IRF are fixed, and sample-specific functions convoluted on top.  
This approach again allows complex peak shapes to be well-fitted with a small number of refined param-
eters. 

It is also common that real materials have hkl-dependent peak shapes due to strain, size or specific 
structural faults.  These show up most commonly in high resolution synchrotron measurements, where the 
contribution of the IRF to the overall peak shape is low.  Many Rietveld packages offer ways to describe 
these effects.  Approaches include the Stephens and Popa models for anisotropic strain broadening,൬൰-൬൱ 
symmetry-adapted spherical harmonics to allow a hkl-specific fwhm, or specific faulting models.൱, ൬൲ 

The application and analysis of peak shapes is, again, a complex area and there are numerous traps to 
fall into.  Perhaps the most common is that high correlation between peak profile coefficients can lead to 
the least squares getting trapped in false minima or diverging.  In fact, some common peak shape param-
eters are infinitely correlated (e.g. the combination of U, W, and Z in the TCHz function) and should never 
be refined together.  One should also be very careful when using hkl-dependent peak shapes that the 
apparent improvement in fit is not just “mopping up” a more fundamental error in the structural model. 

Finally, it is important to be pragmatic about peak shapes. While in some analyses it is critically im-
portant to describe the peak shape “perfectly”, this is not always the case.  For example, in most structural 
work, the minor misfits in peak shapes will not affect the relative intensities of reflections that influence 
structural parameters provided the misfit is similar for all reflections (though a lower 𝜒ͪ due to better 
fitting will influence uncertainty estimates). 

5. Peak intensities 

5.1 Pawley and Le Bail methods 

In a Pawley or Le Bail analysis, the intensities of individual reflections are freely refined to give the best 
agreement between observed and calculated patterns. For the Pawley method, the expression is identical 
in form to Eq. 2. For the Le Bail method, the function is based around minimising the modulus of the 
weighted difference between observed and calculated diffraction data. If the purpose is to check that all 
the experimentally observed peaks are adequately predicted by the cell and space-group combination, then 
the intensity terms in Section 5.3 do not need to be applied.  If quantitative intensities are needed for 
structure solution or as part of quantitative phase analysis then they should be.  

One useful aspect of the Pawley and Le Bail methods is that the final Rwp agreement factor (see Section 
൰) gives a target for an eventual Rietveld.  Mathematically, the more constrained Rietveld analysis cannot 
give a better goodness of fit than a Pawley analysis; the Pawley therefore gives a data set-specific target.൬൳  

5.2 Rietveld analysis 

In the Rietveld method, peak intensities are determined or constrained by the crystallographic model.  The 
general expression for the intensities has been covered previously but can be given as: 

𝐼௖௔௟௖,𝐒 = 𝑠𝑐𝑎𝑙𝑒 × 𝑚 × 𝐿𝑃 × |𝐹௖௔௟௖,𝐬|ଶ × 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (Eq.  19) 

where 𝑠𝑐𝑎𝑙𝑒 is an overall scale factor, 𝑚 is reflection multiplicity, 𝐿𝑃 describes the Lorentz-polarisation 
correction, and 𝐹௖௔௟௖,𝐬 the calculated structure factor for reflection s = hkl.  𝐹௖௔௟௖,𝐬 is given by: 



𝐹௖௔௟௖,𝐬 = ෍ 𝑡௝ × 𝑜𝑐𝑐௝ × 𝑓௝ × expൣ2𝜋𝑖൫ℎ𝑥௝ + 𝑘𝑦௝ + 𝑙𝑧௝൯൧

௝

(Eq.  20) 

As in any crystallographic analysis, intensities are therefore affected by the fractional atomic coordinates 
(𝑥௝, 𝑦௝, 𝑧௝) of the j atoms, the occupancy of sites (via the scattering factor 𝑓௝ and occupancies, 𝑜𝑐𝑐௝) and 
the atomic displacement parameters (𝑡௝).   

Due to the low number of experimental observations in many powder patterns one typically has to be 
cautious with the parameters refined.  The sensitivity to a light atom position (e.g. H in an organic mole-
cule or O in a heavy metal oxide) may be low with X-ray data.  In these cases use of neutron data or a 
combined X-ray and neutron refinement might be appropriate.  Similarly, one might need to restrict anal-
ysis to a small number of isotropic displacement parameters (a single overall parameter or one per atom 
type).  With neutron data, where the point scattering of neutrons gives high intensity data over a larger q-
range, the use of anisotropic displacement parameters may be possible or even necessary for some anal-
yses. 

The most common Rietveld “crime” related to intensities is to refine parameters that are not supported 
by the data.  For example, with data over a narrow q-range, site occupancies and atomic displacement 
parameters are often sufficiently correlated that they cannot be determined independently. As a corollary, 
it is wise to fit as large a range as feasible. For example, the almost absence of structure high scattering 
angle data is no reason not to include it in the analysis. Quite the contrary. Refining from low to high 
angle data particularly helps de-correlate thermal motion/disorder from site occupancy. It is also important 
to realise that (powder) diffraction measurements can be completely insensitive to some aspects of struc-
ture.  Some examples include: 

 The diffraction pattern of a hypothetical stoichiometric rock-salt-structured TiO would be indis-
tinguishable from that of the true Ti0.83O0.83 vacancy-containing composition.  In a Rietveld anal-
ysis, they would differ only by a scale factor, and the method is blind to the most interesting aspect 
of this structure. 

 Similarly, for a metal oxide MO with three possible cations on the M site (A1−x−yBxCy)O, diffrac-
tion is only sensitive to the relative scattering from M and O sites and the values of x and y cannot 
be determined without more information. 

 Perovskites with general composition A1−xA'xB1−yB'yO3− are of huge technological importance.  
Despite the simplicity of the basic structure, it is impossible to determine the values of x, y and  
from a single diffraction pattern for similar reasons. Prior elemental analysis, however, can help 
inform and constrain the model. 

 The magnetic moment of neutrons means that Rietveld fitting of neutron data can be used for 
magnetic structure determination.  Depending on the symmetry, it may not be possible to unam-
biguously determine moment direction.  There are also a number of cases where very different 
magnetic structures have identical powder patterns.  One example is shown in Figure 2. 

5.3 Other intensity corrections 

There are numerous other factors relating to the diffractometer set-up and sample that influence experi-
mental intensities (see earlier lectures and Table 1).  Many of these are routinely included in WPPF re-
finements.  Effects such as sample absorption, surface roughness in a Bragg-Brentano measurement, ex-
tinction and beam overspill can be described using simple analytical functions, and coefficients of these 
might be refined during the analysis.  Many of these will be highly correlated with site occupancies and 
atomic displacement parameters, as well as with each other so care must be taken. 

 



 
Figure ൬: Two different magnetic structures in (a) and (b) that give rise to identical neutron powder diffraction patterns (c).  

The magnetic moment in (b) is √ͪ that in (a).  The magnetic contribution to the pattern is shown in red on top of the total 
pattern in blue. 

 
In Rietveld refinement it is often possible to account for preferred orientation effects with a small 

number of refinable parameters using either a March–Dollase൭൪-൭൫ approach or using symmetry-adapted 
spherical harmonics.൭൬  Other effects such as incorrect intensities due to extreme texture or a small number 
of large grains in the sample can be harder or impossible to model.  In these cases the only solution is to 
obtain better experimental data. 

One common oversight is not using the correct 𝐿𝑃 correction for the instrument in question.  This will 
lead to systematic errors in intensity with q which often shows up in unreasonable atomic displacement 
parameters. 

6. Agreement factors and visually assessing refinements 

The progress of a Rietveld analysis is usually monitored using various agreement or R-factors which are 
related to the quantities minimized discussed in Section 2.  One is the profile R-factor,33 which measures 
the numerical difference between the measured and calculated profile: 

𝑅௣ =
∑ ห𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜(𝐩)หே

௜ୀଵ

∑ 𝑦௢௕௦,௜
ே
௜ୀଵ

(Eq.  21) 

𝑅𝑝 can overemphasize the strong reflections and it does not take experimental uncertainties into account. 
𝑅𝑤𝑝 (wp = weighted profile) includes the weighting scheme, and is directly related to the Rietveld objec-
tive function (Eq. 2): 

𝑅௪௣ = ඩ
∑ 𝑤௜ ቀ𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜(𝐩)ቁ

ଶ
ே
௜ୀଵ

∑ 𝑤௜𝑦௢௕௦,௜
ଶே

௜ୀଵ

(Eq.  22) 

Both these agreement factors include the background portions of the pattern.  When the background is 
high they can be low even if the fit to the diffraction peaks is poor. To avoid this problem, it is useful to 
subtract the background from the observed step scan intensities in the denominator:  

𝑅௪௣
ᇱ = ඩ

∑ 𝑤௜ ቀ𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜(𝐩)ቁ
ଶ

ே
௜ୀଵ

∑ 𝑤௜൫𝑦௢௕௦,௜ − 𝐵𝑘𝑔௜൯
ଶே

௜ୀଵ

(Eq.  23) 



Another issue associated with profile R-values is that they cannot be readily compared with patterns 
obtained under different conditions.  It is therefore challenging to define what is a “good” R-value.൭൭  One 
way round this is via the so-called expected R-factor, which is wholly determined from counting statistics, 
and gives a measure of the best possible fit.  

𝑅௘௫௣ = ඨ
𝑁 − 𝑃

∑ 𝑤௜𝑦௢௕௦,௜
ଶே

௜ୀଵ

 ≈ 1/ට〈𝑦௢௕௦,௜〉 (Eq.  24) 

or: 

𝑅௘௫௣
ᇱ = ඨ

𝑁 − 𝑃

∑ 𝑤௜൫𝑦௢௕௦,௜ − 𝐵𝑘𝑔௜൯
ଶே

௜ୀଵ

 ≈ 1/ට〈𝑦௢௕௦,௜ − 𝐵𝑘𝑔௜〉 (Eq.  25) 

for N data points and P parameters. If  𝑦𝑜𝑏𝑠,𝑖 are raw counts, then 𝑅௘௫௣ and 𝑅௘௫௣
ᇱ  are, respectively, approx-

imately the inverse of the square root of the average observed count and the average (observed−back-
ground) count.  

The ratio  between 𝑅𝑤𝑝 and 𝑅𝑒𝑥𝑝 (also called the goodness of fit GOF) is a measure of the quality of fit: 

χ =
𝑅௪௣

𝑅௘௫௣

=
ඨ∑ 𝑤௜ ቀ𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜(𝐩)ቁ

ଶ
ே
௜ୀଵ

𝑁 − 𝑃
(Eq.  26) 

A χ between 1 and 1.5 usually indicates a good model.  Note that 2 is the function that is being minimised. 
By definition, a χ valued less than 1 is a statistical impossibility.  Low values of χ can occur if you have 
a high background (𝑅௪௣ will be artificially low) or a high value of 𝑅௘௫௣ due to insufficient counting times. 

For a more direct comparison with single crystal data, 𝑅஻௥௔௚௚ can be used, which is based on integrated 
reflection intensities rather than step scan intensities: 

𝑅஻௥௔௚௚ =
∑ ห𝐼௢௕௦,௞ − 𝐼௖௔௟௖,௞ห௄

௞ୀଵ

∑ 𝐼௢௕௦,௞
௄
௞ୀଵ

(Eq.  27) 

𝐼𝑜𝑏𝑠,𝑘 and 𝐼𝑐𝑎𝑙𝑐,𝑘 are the "observed" and calculated intensities of the kth out of K reflections. Rietveld 𝑅஻௥௔௚௚ 
values are often much lower than those from single crystal experiments and should be interpreted with 
caution. When peaks overlap, the total intensity is apportioned to individual hkl-reflections according to 
the ratio of the calculated intensities. This leads to a biased or overly optimistic assessment of 𝑅𝐵𝑟𝑎𝑔𝑔.

The Durbin-Watson൭൮-൭൯ statistic:  

𝑑 =
∑ (∆𝑦௜ − ∆𝑦௜ିଵ)ே

௜ୀଵ

∑ (∆𝑦)ଶே
௜ୀଵ

(Eq.  28) 

with ∆𝑦௜ = 𝑦௢௕௦,௜ − 𝑦௖௔௟௖,௜ measures serial correlations between adjacent data points in the difference pat-
tern. For a good refinement in which the difference plot is random, a value of 2.0 is expected. Correlated 
uncertainites lead to significantly lower values.

In practice, the best way to judge a refinement is often via a Rietveld plot such as Figure ൫.  Here the 
observed, calculated and difference profiles are shown and visual analysis of these can often identify 
problems with the model.  Some practical points to consider include: 

 Look at plots on 𝑦௢௕௦, ඥ𝑦௢௕௦ and ln 𝑦௢௕௦ scales to identify problems with both weak and strong 
peaks. 

 Plot the background function to make sure it is appropriate, particularly with structure-independent 
refinements at high q where there is significant peak overlap. 



 Make sure the fit is good over the whole X range. 

 Look at both the difference and weighted difference curves for systematic problems as a function 
of X.  Small misfits of weaker peaks may be more statistically important than larger misfits on 

strong peaks due to the 1 𝜎൫𝑦௢௕௦,௜൯
ଶ

⁄  weighting.  The weighted difference plot also puts the dis-
crepancies on a statistically meaningful scale. 

 Plot the cumulative 𝜒ଶ function36 which shows the contributions to 𝜒ଶ as a function of X to identify 
problem regions of the fit. 

 A poor WPPF fit can be masked by plotting over a large X range, by using a y scale that emphasizes 
only the strong reflections, or by using large points for the experimental data.  Do not do this in 
presentations or publications! 

 When describing a refinement never say you “refined the data”.  The parameters are refined; the 
data are fitted. 

7. Multiphase and multipattern 

Most of the discussion above has focused on fitting a single powder pattern containing a single crystalline 
phase.  However, as shown by Eq. 1, it is straightforward to extend the method to multiphase samples.  
One can then analyse multiple structures simultaneously.  In the case of Rietveld refinement one can 
obtain quantitative information on the crystalline phases present via the Rietveld scale factors.  By using 
internal intensity standards, information on the amorphous content of a sample can also be obtained. 

It is also common to have more than one powder pattern for a given sample.  In the case of time-of-
flight neutron diffraction, the data are normally collected from different banks of detectors giving several 
powder patterns which cover different d-spacing ranges with different resolutions.  It is common to fit 
these data simultaneously with a single structural model in a “multi-bank” or “multi-histogram” refine-
ment.  It can also be useful to simultaneously fit data from multiple sources using a single structural model.  
The most common application is a combined X-ray and neutron refinement.  Here one takes advantage of 
the different scattering factors (lengths) of X-rays and neutrons to gain more information on a material.  
Simultaneous fitting of powder diffraction data and PDF data (see the lecture from Prof. Billinge) or 
powder data and data from other techniques such as XAFS is also possible. 

Procedures for analysing multiple data sets from a single sample under evolving conditions (time, 
temperature, pressure, chemistry, etc.) are covered in later notes. 

8. Refinement strategy 

In the early days of WPPF it was crucial to adopt a conservative refinement strategy to prevent the least 
squares diverging.  With modern software many of these issues have disappeared.  However, some general 
points for problem refinements include: 

 Before refining any parameters, visually compare the observed and calculated patterns (perform 
zero least squares cycles) to identify the most important discrepancies. 

 Don’t be afraid to change parameters to more sensible values and perhaps fix them during early 
stages of the refinement. 

 A refinement is unlikely to converge if there is no overlap between calculated and observed peaks 
in cycle zero. 

 Peak-shape parameters are often highly correlated.  Consider starting with a fixed peak shape, or 
one with a small number of free parameters. 



 In Rietveld work consider initially fixing cell parameters and peak shapes at values derived from 
a Pawley or Le Bail fit. 

 Try using a restricted 2 range in early stages of the refinement.  This speeds up calculations, and 
the smaller number of reflections at lower angles makes it easier to identify potential problems. 

 Remember to turn on all relevant parameters for the final cycles of refinement to ensure that pa-
rameter uncertainties are calculated correctly. 

 Examine the uncertainties in parameters using the variance-covariance matrix.  Don’t arbitrarily 
fix one parameter to remove correlation problems if the parameters are of interest. 

 Be careful if your software has “helped you” by setting an artificial minimum and maximum limit 
on a parameter and that limit has been hit.  Fix the problem or remove the parameter so the values 
and uncertainties of other parameters are correctly calculated. 

 Save all the details of your model and final refinement in a full powder CIF file (see later lectures). 

 Never refine a parameter if you do not know what it does.  Not every “tick box” option needs to 
be ticked and, in TOPAS, not every ! should be an @. 

9. Conclusions and what next 

There are several workshops where you can learn different Rietveld packages (FullProf, GSAS, TOPAS) 
from the experts.  Each package has different strengths and weaknesses; knowing the tricks available in 
each is useful.  For a simple practical introduction to Rietveld refinement you could try “Structure Anal-
ysis from Powder Diffraction Data: Rietveld Refinement in Excel”.37  This paper introduces least squares 
refinement using the solver function in Excel, as well as guiding you through solving a linear least squares 
problem by hand.  It then discusses fitting individual peaks in a pattern, building from this towards a 
Pawley-like fit, then a full Rietveld refinement of a simple structure.  There is an accompanying online 
tutorial at https://topas.webspace.durham.ac.uk/tutorial_riet_excel/.  Website https://topas.web-
space.durham.ac.uk/topas_user_menu/ has various training exercises in the methods discussed.  Finally 
there are post-school “ask the expert” opportunities via the Rietveld mailing list (rietveld_l-request@ill.fr) 
or user forums (e.g. https://topas.awh.durham.ac.uk/flarum/public/). 
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