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Erice School 2024 – linear least squares by hand  
John S. O. Evans* and Ivana Radosavljevic Evans 

Department of Chemistry, Durham University, Science Site, South Road, Durham DH1 3LE, U.K. 

 

STUDENT PROBLEMS: LEAST SQUARES BY-HAND 

It’s worth trying to do a least squares problem by hand once in your life, if only to convince you of the 

power of using a computer.  Answer for the problem can be checked with the Excel LINEST function 

and should be: m = 5.3, c = −4.5, m=0.79, c = 2.17.  The correlation coefficient is mc = −0.91. 

 

Q1. Find the best fit line that passes through the points (1,2), (3,5), (6,10).  Calculate the standard un-

certainty and correlation coefficient between the gradient and intercept.  Comment on the sign of the 

correlation coefficient. Check your answer using, e.g. the excel LINEST function. 

Q2. Add a constraint that the line should pass through the origin; how does the value of the gradient 

change under this constraint?   

Q3. Repeat Q1 but using a restraint that the line should pass through the origin. 

METHOD 

You can solve this problem using the type of matrix expressions used in most least squares programs 

and applying a simple least squares recipe (the proof is given in many texts on statistics).   

Express the experimental data as a series of observational equations, one for each of the three obser-

vations: 

𝑚× 𝑥 + 𝑐 = 𝑦  

𝑚 × 𝑥 + 𝑐 = 𝑦  

𝑚 × 𝑥 + 𝑐 = 𝑦  

Where xi is the independent variable and yi the dependent variable.  These equations can be expressed 

in matrix form as: 

𝑥 1
𝑥 1
𝑥 1

𝑚
𝑐

=

𝑦
𝑦
𝑦
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This equation has the form: 

Ax = b 

Where A is called the design matrix, x is the vector of unknowns (what we want to solve for) and b is 

the vector of observations.  The least squares recipe to obtain the best-fit x is to pre-multiply each side 

of this equation by the transpose of AT:  

ATAx=ATb 

then pre-multiply each side by (ATA)-1 to solve for x: 

x= ATA
-1

ATb 

The standard uncertainties and correlation coefficient can be calculated from the variance-covariance 

matrix M: 

M =
𝜎 𝜎 𝜎 𝜇

𝜎 𝜎 𝜇 𝜎
 

where 𝜎  is the variance of m, 𝜎 𝜎 𝜇  is the covariance of m and c, and 𝜇  is the correlation coeffi-

cient.  The values of each entry in this matrix can be calculated from the equation: 

M =
1

𝑛 − 𝑝
𝑤 (𝑦 − 𝑦 ) ATA  

Where n is the number of observations and p the number of parameters. 

To repeat the calculation using a constraint, adjust the problem so that the equation used is y = mx.  

i.e. you change the equations being used in the problem. 

To add a restraint, you include (0, 0) as an extra observation.  To increase the weighting on the re-

straint you could add the extra observation in twice, three times, or more.  Alternatively, you could 

add a weighting matrix to the problem with zeros everywhere except the diagonal.  The diagonal 

should contain either 1 or a higher number for each weight.  The equations become: 

WAx=Wb 

(𝐀𝐓𝐖𝐀)x=(𝐀𝐓𝐖)b 

x=(𝐀𝐓𝐖𝐀) 𝟏(𝐀𝐓𝐖)b 
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ANSWERS 

Q1. For our specific example we can plug data values into these equations and express the observa-

tional equations as: 

1 1
3 1
6 1

𝑚
𝑐

=
2
5
10

 

Pre-multiplying both sides by the transpose AT: 

1 3 6
1 1 1

1 1
3 1
6 1

𝑚
𝑐

=
1 3 6
1 1 1

2
5
10

 

gives: 

46 10
10 3

𝑚
𝑐

=
77
17

 

Note that this represents two equations with two unknowns.  The inverse matrix (ATA)-1 is: 

1

38
3 −10

−10 46
 

Pre-multiplying both sides gives: 

𝑚
𝑐

=
1.60526
0.31579

 

That is, m = 1.60526 and c = 0.31579.   

To get the variance-covariance matrix we need to calculate the sum of (yobs − ycalc)2: 

x yobs ycalc (yobs − ycalc)2 

1 2 1.921 6.24×10−3 

3 5 5.131 0.0172 

6 10 9.94 2.938×10−3 

 

The sum of the (yobs − ycalc)2  column is 0.0263.  We then calculate M as: 

𝑴 =
𝜎 𝜎 𝜎 𝜇

𝜎 𝜎 𝜇 𝜎
=
1

1
× 0.0263 ×

1

38
×

3 −10
−10 46

=
0.00208 −0.0069
−0.0069 0.0318

 

Giving m=0.05, c = 0.18, mc = −0.86.  The negative correlation coefficient is as we would expect: as 

the gradient m decreases (the line becomes less steep), the intercept c would increase. 

Adding a constraint that the line should pass through the origin can be done by repeating the calcula-

tion with the observational equations y = mx.  You can work through the problem in the same way and 
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should get m = 1.674.  Constraining the best fit line to pass through y = 0 rather than y = +0.31579 

makes the gradient steeper as we would intuitively expect. 

Adding an extra observation that the line goes through (0,0) leads to: 

1 3 6 0
1 1 1 1

1 1
3 1
6 1
0 1

𝑚
𝑐

=
1 3 6 0
1 1 1 1

2
5
10
0

 

46 10
10 4

𝑚
𝑐

=
77
17

 

1/21 −5/42
−5/42 23/42

77
17

=
1.64
0.14

 

This gives m = 1.64 and c = 0.14.  The line is closer to going through the origin and the gradient is 

steeper.  Adding a weight matrix with a weight of 10 on the line going through the origin changes the 

problem to: 

46 10
10 14

𝑚
𝑐

=
77
17

 

7/272 −5/272
−5/272 23/272

77
17

=
1.669
0.02

 

The higher the weighting, the closer the line is to going through the origin and the steeper the gradi-

ent.  The gradient of m = 1.67 is approaching the value with a constraint that the line passes through 

the origin.  As we applied an arbitrary weighting scheme it doesn’t make sense to calculate standard 

uncertainties. 


