Hi All,
I was able to run through and complete the Tutorial 39.5 with the provided files recently. However, I have not been quite so lucky with my own data. I have followed the steps as in the tutorial, and have been able to successfully use the python script to make the required files to repeat this on my own data, before reproducing the input file using the tutorial one as a template. Unfortunately, I think I have an issue with my input file, as Topas is unable to run this, giving the following error:
*** Error loading sstring_in
at LINE 24
See log file C:\science\Topas7\topas.log
Equation error for Concat in get_d :
I have tried searching for this error, as well as just changing the relevant lines in the .inp, but I think this must be changing something else as this results in an “Exception caught!” error.
If anyone has seen this before, or has advice on how to solve this, please let me know. Thanks in advance!
All the best,
James
P.S. I have included the section of the .inp where this appears as text below, I could not figure out how to upload the .inp itself so apologies for the long post!
`/*-------------------------------------------------------------------
'{{{ 3. #list of subgroups for top of INP file
'#define test_single_sub_group
#ifdef test_single_sub_group
num_runs = 1 * 2; 'number of subgroups * number of runs
#list subgrp_use subgrp_num spgrp step {
{#define subgroup_1_C2/m } 1 C2/m_basis={(1|0|0)|(0|1|0)|(0|0|1)}origin=(0|0|0)s=1_i=1 1 {#define subgroup_1_C2/m } 1 C2/m_basis={(1|0|0)|(0|1|0)|(0|0|1)}origin=(0|0|0)s=1_i=1 2
}
#else
num_runs = 32 * 2 ' number of subgroups * number of repeats
out_file = Concat(String(INP_File), ".INP");
#list subgrp_use subgrp_num spgrp step {
{#define subgroup_1_C2/m } 1 C2/m_basis={(1|0|0)|(0|1|0)|(0|0|1)}origin=(0|0|0)s=1_i=1 1 {#define subgroup_1_C2/m } 1 C2/m_basis={(1|0|0)|(0|1|0)|(0|0|1)}origin=(0|0|0)s=1_i=1 2
{#define subgroup_2_Cm } 2 Cm_basis={(1|0|0)|(0|1|0)|(0|0|1)}origin=(0|0|0)s=1_i=2 1 {#define subgroup_2_Cm } 2 Cm_basis={(1|0|0)|(0|1|0)|(0|0|1)}origin=(0|0|0)s=1_i=2 2
{#define subgroup_3_P-1 } 3 P-1_basis={(0|-1|0)|(1/2|-1/2|0)|(1/2|-1/2|1)}origin=(0|0|0)s=1_i=2 1 {#define subgroup_3_P-1 } 3 P-1_basis={(0|-1|0)|(1/2|-1/2|0)|(1/2|-1/2|1)}origin=(0|0|0)s=1_i=2 2
{#define subgroup_4_C2 } 4 C2_basis={(1|0|0)|(0|1|0)|(0|0|1)}origin=(0|0|0)s=1_i=2 1 {#define subgroup_4_C2 } 4 C2_basis={(1|0|0)|(0|1|0)|(0|0|1)}origin=(0|0|0)s=1_i=2 2
{#define subgroup_5_P1 } 5 P1_basis={(0|-1|0)|(1/2|-1/2|0)|(1/2|-1/2|1)}origin=(0|0|0)s=1_i=4 1 {#define subgroup_5_P1 } 5 P1_basis={(0|-1|0)|(1/2|-1/2|0)|(1/2|-1/2|1)}origin=(0|0|0)s=1_i=4 2
{#define subgroup_6_P2/m } 6 P2/m_basis={(-1|0|0)|(0|1|0)|(0|0|-1)}origin=(0|0|0)s=2_i=2 1 {#define subgroup_6_P2/m } 6 P2/m_basis={(-1|0|0)|(0|1|0)|(0|0|-1)}origin=(0|0|0)s=2_i=2 2
{#define subgroup_7_P2_1/c } 7 P2_basis={(0|0|1)|(0|-1|0)|(1|0|0)}origin=(0|0|0)s=2_i=2 1 {#define subgroup_7_P2_1/c } 7 P2_basis={(0|0|1)|(0|-1|0)|(1|0|0)}origin=(0|0|0)s=2_i=2 2
{#define subgroup_8_P2/c } 8 P2/c_basis={(0|0|1)|(0|-1|0)|(1|0|0)}origin=(-1/4|1/4|0)s=2_i=2 1 {#define subgroup_8_P2/c } 8 P2/c_basis={(0|0|1)|(0|-1|0)|(1|0|0)}origin=(-1/4|1/4|0)s=2_i=2 2
{#define subgroup_9_P2_1/m } 9 P2_basis={(-1|0|0)|(0|1|0)|(0|0|-1)}origin=(-1/4|-1/4|0)s=2_i=2 1 {#define subgroup_9_P2_1/m } 9 P2_basis={(-1|0|0)|(0|1|0)|(0|0|-1)}origin=(-1/4|-1/4|0)s=2_i=2 2
{#define subgroup_10_Pm } 10 Pm_basis={(-1|0|0)|(0|1|0)|(0|0|-1)}origin=(0|0|0)s=2_i=4 1 {#define subgroup_10_Pm } 10 Pm_basis={(-1|0|0)|(0|1|0)|(0|0|-1)}origin=(0|0|0)s=2_i=4 2
{#define subgroup_11_Pc } 11 Pc_basis={(0|0|1)|(0|-1|0)|(1|0|0)}origin=(0|1/4|0)s=2_i=4 1 {#define subgroup_11_Pc } 11 Pc_basis={(0|0|1)|(0|-1|0)|(1|0|0)}origin=(0|1/4|0)s=2_i=4 2
{#define subgroup_12_P-1 } 12 P-1_basis={(0|-1|0)|(-1|0|0)|(0|0|-1)}origin=(0|0|0)s=2_i=4 1 {#define subgroup_12_P-1 } 12 P-1_basis={(0|-1|0)|(-1|0|0)|(0|0|-1)}origin=(0|0|0)s=2_i=4 2
{#define subgroup_13_P-1 } 13 P-1_basis={(0|-1|0)|(-1|0|0)|(0|0|-1)}origin=(-1/4|-1/4|0)s=2_i=4 1 {#define subgroup_13_P-1 } 13 P-1_basis={(0|-1|0)|(-1|0|0)|(0|0|-1)}origin=(-1/4|-1/4|0)s=2_i=4 2
{#define subgroup_14_P2 } 14 P2_basis={(-1|0|0)|(0|1|0)|(0|0|-1)}origin=(0|0|0)s=2_i=4 1 {#define subgroup_14_P2 } 14 P2_basis={(-1|0|0)|(0|1|0)|(0|0|-1)}origin=(0|0|0)s=2_i=4 2
{#define subgroup_15_P2_1 } 15 P2_basis={(-1|0|0)|(0|1|0)|(0|0|-1)}origin=(-1/4|0|0)s=2_i=4 1 {#define subgroup_15_P2_1 } 15 P2_basis={(-1|0|0)|(0|1|0)|(0|0|-1)}origin=(-1/4|0|0)s=2_i=4 2
{#define subgroup_16_P1 } 16 P1_basis={(0|-1|0)|(-1|0|0)|(0|0|-1)}origin=(0|0|0)s=2_i=8 1 {#define subgroup_16_P1 } 16 P1_basis={(0|-1|0)|(-1|0|0)|(0|0|-1)}origin=(0|0|0)s=2_i=8 2
{#define subgroup_17_C2/m } 17 C2/m_basis={(-1|0|0)|(0|3|0)|(0|0|-1)}origin=(0|0|0)s=3_i=3 1 {#define subgroup_17_C2/m } 17 C2/m_basis={(-1|0|0)|(0|3|0)|(0|0|-1)}origin=(0|0|0)s=3_i=3 2
{#define subgroup_18_Cm } 18 Cm_basis={(-1|0|0)|(0|3|0)|(0|0|-1)}origin=(0|0|0)s=3_i=6 1 {#define subgroup_18_Cm } 18 Cm_basis={(-1|0|0)|(0|3|0)|(0|0|-1)}origin=(0|0|0)s=3_i=6 2
{#define subgroup_19_P-1 } 19 P-1_basis={(-1/2|-3/2|0)|(-1/2|3/2|0)|(0|0|-1)}origin=(0|0|0)s=3_i=6 1 {#define subgroup_19_P-1 } 19 P-1_basis={(-1/2|-3/2|0)|(-1/2|3/2|0)|(0|0|-1)}origin=(0|0|0)s=3_i=6 2
{#define subgroup_20_C2 } 20 C2_basis={(-1|0|0)|(0|3|0)|(0|0|-1)}origin=(0|0|0)s=3_i=6 1 {#define subgroup_20_C2 } 20 C2_basis={(-1|0|0)|(0|3|0)|(0|0|-1)}origin=(0|0|0)s=3_i=6 2
{#define subgroup_21_P1 } 21 P1_basis={(-1/2|-3/2|0)|(-1/2|3/2|0)|(0|0|-1)}origin=(0|0|0)s=3_i=12 1 {#define subgroup_21_P1 } 21 P1_basis={(-1/2|-3/2|0)|(-1/2|3/2|0)|(0|0|-1)}origin=(0|0|0)s=3_i=12 2
{#define subgroup_22_P2/m } 22 P2/m_basis={(1|0|0)|(0|3|0)|(0|0|1)}origin=(0|0|0)s=6_i=6 1 {#define subgroup_22_P2/m } 22 P2/m_basis={(1|0|0)|(0|3|0)|(0|0|1)}origin=(0|0|0)s=6_i=6 2
{#define subgroup_23_P2_1/c } 23 P2_basis={(0|0|1)|(0|-3|0)|(1|0|0)}origin=(0|0|0)s=6_i=6 1 {#define subgroup_23_P2_1/c } 23 P2_basis={(0|0|1)|(0|-3|0)|(1|0|0)}origin=(0|0|0)s=6_i=6 2
{#define subgroup_24_P2/c } 24 P2/c_basis={(0|0|1)|(0|-3|0)|(1|0|0)}origin=(-1/4|1/4|0)s=6_i=6 1 {#define subgroup_24_P2/c } 24 P2/c_basis={(0|0|1)|(0|-3|0)|(1|0|0)}origin=(-1/4|1/4|0)s=6_i=6 2
{#define subgroup_25_P2_1/m } 25 P2_basis={(1|0|0)|(0|3|0)|(0|0|1)}origin=(1/4|1/4|0)s=6_i=6 1 {#define subgroup_25_P2_1/m } 25 P2_basis={(1|0|0)|(0|3|0)|(0|0|1)}origin=(1/4|1/4|0)s=6_i=6 2
{#define subgroup_26_Pm } 26 Pm_basis={(1|0|0)|(0|3|0)|(0|0|1)}origin=(0|0|0)s=6_i=12 1 {#define subgroup_26_Pm } 26 Pm_basis={(1|0|0)|(0|3|0)|(0|0|1)}origin=(0|0|0)s=6_i=12 2
{#define subgroup_27_Pc } 27 Pc_basis={(0|0|1)|(0|-3|0)|(1|0|0)}origin=(0|1/4|0)s=6_i=12 1 {#define subgroup_27_Pc } 27 Pc_basis={(0|0|1)|(0|-3|0)|(1|0|0)}origin=(0|1/4|0)s=6_i=12 2
{#define subgroup_28_P-1 } 28 P-1_basis={(1|0|0)|(0|0|1)|(0|-3|0)}origin=(0|0|0)s=6_i=12 1 {#define subgroup_28_P-1 } 28 P-1_basis={(1|0|0)|(0|0|1)|(0|-3|0)}origin=(0|0|0)s=6_i=12 2
{#define subgroup_29_P-1 } 29 P-1_basis={(1|0|0)|(0|0|1)|(0|-3|0)}origin=(1/4|1/4|0)s=6_i=12 1 {#define subgroup_29_P-1 } 29 P-1_basis={(1|0|0)|(0|0|1)|(0|-3|0)}origin=(1/4|1/4|0)s=6_i=12 2
{#define subgroup_30_P2 } 30 P2_basis={(1|0|0)|(0|3|0)|(0|0|1)}origin=(0|0|0)s=6_i=12 1 {#define subgroup_30_P2 } 30 P2_basis={(1|0|0)|(0|3|0)|(0|0|1)}origin=(0|0|0)s=6_i=12 2
{#define subgroup_31_P2_1 } 31 P2_basis={(1|0|0)|(0|3|0)|(0|0|1)}origin=(1/4|0|0)s=6_i=12 1 {#define subgroup_31_P2_1 } 31 P2_basis={(1|0|0)|(0|3|0)|(0|0|1)}origin=(1/4|0|0)s=6_i=12 2
{#define subgroup_32_P1 } 32 P1_basis={(1|0|0)|(0|0|1)|(0|-3|0)}origin=(0|0|0)s=6_i=24 1 {#define subgroup_32_P1 } 32 P1_basis={(1|0|0)|(0|0|1)|(0|-3|0)}origin=(0|0|0)s=6_i=24 2
}
#endif
out_file = Concat(String(INP_File), ".INP");
subgrp_use(Run_Number)
#prm step_num = step(Run_Number);
'}}}