Hi,
I am looking for a macro to fit the asymmetric peak shapes of NIST Silicon data and generate an instrument function similar to Caglioti function. As mentioned in Balzar ([J. Res. Natl. Inst. Stand. Technol. 98, 321 (1993)]), the broadening can be modelled using Caglioti (eq 69) and the asymmetric peak shapes can be simulated using split-PearsonVII function (equation 73).
I do have the macro for Caglioti based on gaussian and PV, can anyone suggest how can i modify it to introduce split pearson function.
Thanks,
Raju
macro CagliotiPV(u,uv,v,vv,w,wv,lora,lorav,lorb,lorbv, lorc, lorcv)
{
#m_argu u
#m_argu v
#m_argu w
If_Prm_Eqn_Rpt(u,uv,min 0)
If_Prm_Eqn_Rpt(v,vv, max 0)
If_Prm_Eqn_Rpt(w,wv, min 0)
If_Prm_Eqn_Rpt(lora,lorav, min =0; max = Min(2, Val+.1); del 1.0e-4)
If_Prm_Eqn_Rpt(lorb,lorbv, min = 0; max = Min(2, Val+.1); del 1.0e-4)
If_Prm_Eqn_Rpt(lorc,lorcv, min = 0; max = Min(2, Val+.1); del 1.0e-4)
gauss_fwhm = Sqrt( Abs( CeV(u,uv) Tan((Th))^2 + CeV(v,vv) Tan((Th)) + CeV(w,wv) ) );
circles_conv = CeV(lora,lorav) + CeV(lorb,lorbv) (2 Th) + CeV(lorc,lorcv) (2 Th)^2;
}