babaryk
Dear TA Users,
Did anybody try to assemble an output information utilizing Stephens phenomenological model for anisotropic microstrain effect in a form suitable for plotting, say as [fwhm/(tan(theta)=f(hklm)]?
I'm looking for nice suggestion to construct consequent macro.
With Kind Regards,
Artem
johnsoevans
I think Andreas Leineweber or Robert Dinnebier have thought most about this. I'm not sure if they are forum readers though.
alancoelho
Temporarily modify the Stephens_lor_gauss macro from:
macro Stephens_lor_gauss(etac, etav, mhkl)
{
#m_argu etac If_Prm_Eqn_Rpt(etac, etav, min 0 max 1)
local #m_unique pp_ = D_spacing^2 * Sqrt(Max(mhkl,0)) Tan(Th) 0.0018/3.1415927;
gauss_fwhm = pp_ (1-CeV(etac, etav));
lor_fwhm = pp_ CeV(etac, etav);
}
To:
macro Stephens_lor_gauss(etac, etav, mhkl)
{
#m_argu etac If_Prm_Eqn_Rpt(etac, etav, min 0 max 1)
local #m_unique pp_ = D_spacing^2 * Sqrt(Max(mhkl,0)) Tan(Th) 0.0018/3.1415927;
prm g1_out = pp_ (1-CeV(etac, etav));
prm l1_out = pp_ CeV(etac, etav);
gauss_fwhm = g1_out;
lor_fwhm = l1_out;
}
Then at the structure in question do the output; ie. something like:
phase_out SOMEFILE load out_record out_fmt out_eqn
{
"%3.0f" = H;
" %3.0f" = K;
" %3.0f" = L;
" %11.5f" = D_spacing;
" %11.5f" = g1_out;
" %11.5f\n" = l1_out;
}
babaryk
John,
thanks for attracting interest for the case!
Alan,
If I got it well, it might be re-stated within older (original Stephens's, Dinnebier's and Leineweber's) macro as:
....
prm pp = D_spacing^2 * Sqrt(Max(mhkl,0)) / 1000;
gauss_fwhm = 1.8/3.1415927 pp (1-eta) Tan(Th) + 0.0001;
lor_fwhm = 1.8/3.1415927 pp eta Tan(Th) + 0.0001;
to
...
prm pp = D_spacing^2 * Sqrt(Max(mhkl,0)) / 1000;
prm g1_out = 1.8/3.1415927 pp (1-eta) Tan(Th) + 0.0001;
prm l1_out = 1.8/3.1415927 pp eta Tan(Th) + 0.0001;
gauss_fwhm = g1_out;
lor_fwhm = l1_out;
and subsequently,
phase_out ANYCASEFILE load out_record out_fmt out_eqn
{
"%3.0f" = H;
" %3.0f" = K;
" %3.0f" = L;
" %11.5f" = D_spacing;
" %11.5f" = g1_out;
" %11.5f\n" = l1_out;
}
isn't?